197. 1/(2^9*5^3)写成小数的话在第一个不是零的那一位和小数点之间有多少个零。
答案:4。
但我算出来是:5个零。利用2*5=10这个特性,将原分式化解为:
1/(2^9*5^3) = 1/ (2^3 * 5^3)*2^6 = 1/ 10^3*2^6 = 1/64 * 10^-3 ,约等于=1.5*10^-2*10*-3 =1.5*10^-5,因此有5个零。
请NN指正,谢谢了!
举报
181。
4个数字的平均值为32,加入一个数字后,平均值为50
问该数字? Ans.122
我算出来是 (32*4 + x) / 4 = 50, 答案为72.
罗马青年:
应该是 (32*4 + x) / 5 = 50, 5个数的平均数, 而不再是4个数了.
这样的题一定要注意. GMAC经常有类似的trick.
2^9*5^3=2^6*10^3
1/(2^6*10^3)=(1/6.4)*10^-4
1/6.4肯定為0.1*, 所以只用看10^-4,就可以推斷小數點的位置
前面都对,就是到了1/64这里错了。 1/64=0.0156***, 只有一个零
88.K,M,N三个都是两位数的正整数,K<M<N而且三个数都挨着,各位数的和能被10整除,记得好像是要求K?
设k的个位数为a,十位数为b:
则 K为:10b + a;
M则为:10b + ( a + 1);
N 则为:10b + ( a + 2);
由于各位数(个?位数)的和能被10整除,则 a + ( a + 1)+ ( a + 2)=10N (但a在个位上,只能是从0到<=9的整数;),得出3a+3=10N, 只有 a =9,才满足以上等式及条件,因此这个十位上的数是从1到8的数字,K 可以为:19 / 29 / 39/ 49/ 59 / 69 / 79 / 89 ,这8个数都满足所有条件(99不可以,因为那样的话,后面紧挨的数就成为3位数了)。
245.已知k>m>n, and k, m, n d 是连续的整数,他们的和可以被10整除,问k=?(1) m是7的倍数(2) n是质数
则 K为:100a+10b+c ;
M则为:100a+10b+c+1
N 则为:100a+10b+c+2
100a+10b+c+100a+10b+c+1+100a+10b+c+2=10N
c=9
(1)k=19,29,39...m=20,30,40,,,
m=70,m=140均满足(1),A不对
(2)n=21,31...B不对
选E?请NN指教?
94.等比数列 a1=1 问(a^99+a^101)/a^100
这题怎么算, 是不是(a99+a100)/a100?也算不出来啊?
发表回复
手机版|ChaseDream|GMT+8, 2026-1-27 04:09 京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号
ChaseDream 论坛
© 2003-2025 ChaseDream.com. All Rights Reserved.