| Nearly a century ago, biologists found that if they 
 separated an invertebrate animal embryo into two parts 
 at an early stage of its life, it would survive and develop 
 as two normal embryos. This led them to believe that the 
 (5) cells in the early embryo are undetermined in the sense 
 that each cell has the potential to develop in a variety of 
 different ways. Later biologists found that the situation 
 was not so simple. It matters in which plane [ring1] the embryo 
 is cut. If it is cut in a plane different from the one used 
 (10) by the early investigators, it will not form two whole 
 embryos.  
 A debate arose over what exactly was happening. 
 Which embryo cells are determined, just when do they- 
 become irreversibly committed to their fates, and what 
 (15) are the “morphogenetic determinants” that tell a cell 
 what to become? But the debate could not be resolved 
 because no one was able to ask the crucial questions 
 in a form in which they could be pursued productively. 
 Recent discoveries in molecular biology, however, have 
 (20) opened up prospects for a resolution of the debate. 
 Now investigators think they know at least some of the 
 molecules that act as morphogenetic determinants in 
 early development. They have been able o show that, 
 in a sense, cell determination begins even before an egg 
 (25) is fertilized . 
 Studying sea urchins, biologist Paul Gross found 
 that an unfertilized egg contains substances that func- 
 tion as morphogenetic determinants. They are located 
 in the cytoplasm of the egg cell; i.e., in that part of the 
 (30) cell’s protoplasm  that lies outside of the nucleus. In the 
 unfertilized egg, the substances are inactive and are not 
 distributed homogeneously. When the egg is fertilized, 
 the substances become active and, presumably, govern 
 the behavior of the genes they interact with. Since the 
 (35) substances are unevenly distributed in the egg, when the 
 fertilized egg divides, the resulting cells are different 
 from the start and so can be qualitatively different in 
 their own gene activity. 
 The substances that Gross studied are maternal  
 (40) messenger RNA’s --products of certain of the maternal 
 genes. He and other biologists studying a wide variety 
 of organisms have found that these particular RNA’s 
 direct, in large part, the synthesis of histones, a class 
 of proteins that bind to DNA. Once synthesized, the 
 (45) histones move into the cell nucleus, where section of 
 DNA wrap around them to form a structure that resem- 
 bles beads , or knots, on a string. The beads are DNA 
 segments wrapped around the histones; the string is the 
 intervening DNA. And it is the structure of these beaded 
 (50) DNA strings that guides the fate of the cells in which 
 they are located. 
   
 27. According to the passage, when biologists believed that the cells in the early embryo were undetermined, they made which of the following mistakes? 
 (A) They did not attempt to replicate [ring10] the original experiment of separating an embryo into two parts. 
 (B) They did not realize that there was a connection between the issue of cell determination and the outcome of the separation experiment. 
 (C) They assumed that the results of experiments on embryos did not depend on the particular animal species used for such experiments. 
 (D) They assumed that it was crucial to perform the separation experiment at an early stage in the embryo’s life. 
 (E) They assumed that different ways of separating an embryo into two parts would be equivalent as far as the fate of the two parts was concerned. 
   
 同意答案是E。但好像也挑不出B的不对呢?因为即然这些科学家认为这些细胞都是undetermined,那么他们自然也就不会意识到在cell determination 和separation experiment有联系了。请指教! 
 
   
 |