ChaseDream
搜索
返回列表 发新帖
查看: 612|回复: 2
打印 上一主题 下一主题

鼠穴太太乐446

[复制链接]
跳转到指定楼层
楼主
发表于 2011-5-2 10:41:15 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
401、DS:函数h(x)=x-x^2  问能否判断h(a)<h(b)
(1)    a<b
(2)    a^2<b^2
我琢磨了好久,看起来不像是难题啊,可是就感觉想不通,最后选了C吧,不是很确定

答案应该选E吧。因为是双曲线,不确定a,b的正负。
这题怎么回事啊?

收藏收藏 收藏收藏
沙发
发表于 2011-5-2 12:00:50 | 只看该作者
h(a) = a - a^2
h(b) = b- b^2

We just need to evaluate h(a) - h(b)

h(a) - h(b) = (a-b) - (a^2 - b^2) = (a-b)*(1-a-b)

1) a<b, so (a-b)<0.  But the sign of (1-a-b) could not be determined

2) a^2<b^2, then (a-b)*(a+b)<0. So (a-b) and (a+b) are having opposite signs. If (a-b) <0, then (a+b) >0. But we do not know if (1-a-b) is bigger than, equal to, or smaller than zero. If (a-b) >0, then (a+b) <0, then (1-a-b) >0.  Only under this condition, you can know h(a)>h(b)

When both 1) and 2) combined, 1) (a-b) <0. 2) We still do not know the sign of (1-a-b). Insufficient.

EEEEEEEEEEEEe

P.S. If condition 1) changes to 1) a>b, then the answer would be C as I explained above.
板凳
 楼主| 发表于 2011-5-2 12:21:10 | 只看该作者
h(a) = a - a^2
h(b) = b- b^2

We just need to evaluate h(a) - h(b)

h(a) - h(b) = (a-b) - (a^2 - b^2) = (a-b)*(1-a-b)

1) a<b, so (a-b)<0.  But the sign of (1-a-b) could not be determined

2) a^2<b^2, then (a-b)*(a+b)<0. So (a-b) and (a+b) are having opposite signs. If (a-b) <0, then (a+b) >0. But we do not know if (1-a-b) is bigger than, equal to, or smaller than zero. If (a-b) >0, then (a+b) <0, then (1-a-b) >0.  Only under this condition, you can know h(a)>h(b)

When both 1) and 2) combined, 1) (a-b) <0. 2) We still do not know the sign of (1-a-b). Insufficient.

EEEEEEEEEEEEe

P.S. If condition 1) changes to 1) a>b, then the answer would be C as I explained above.
-- by 会员 sdcar2010 (2011/5/2 12:00:50)


Got it! Thanks a lot
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-7-22 10:37
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部