18 V1:(by ISA91) PS:数列B里都是不同的三角形,这些三角形必须满足3个条件,问共有多少个元素 1.每个三角形角度都是整数,2.每个三角形都至少有一个角是30度,3.没有任何二个三角形度数完全一致 求解~ 参考答案:73[D(1] 一个角是30度设为A角,那么剩下的两角B角和C角和为150度,角度都是整数,设B从1度开始取值,则C角从149开始取值,B有1、2、3……75共75种可能,同时C从149到75也是75种可能,还得再减去一种30 30 120的情况答案就是73个元素。 [D(1]There is discussion that itshould be 75。 Since "3.没有任何二个三角形度数完全一致" I personally think it should be 73 because there are two exceptions: (120,30,30) (30,75,75) please let me know what you think. I actually count them one by one. 1-70, 71.72.73.74 =>74, take 30 out, there are 73 total.
-- by 会员 poa0101 (2011/10/5 13:59:42)
Yes, the answer is correct. But the explaination "B有1、2、3……75共75种可能 should be not to 75, but to 74
-- by 会员 GmatFighter1 (2011/10/5 15:44:12)
why 74, please explain
-- by 会员 poa0101 (2011/10/5 15:45:37)
you answer the question yourself right? since once you count to 75, it is another exception75,75,30, so the answer is 74 and minus the other exception of 30 30 120