ChaseDream
搜索
返回列表 发新帖
查看: 631|回复: 4
打印 上一主题 下一主题

求解:GWD数学3

[复制链接]
跳转到指定楼层
楼主
发表于 2010-9-7 12:50:37 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
Q14:

How many seconds will it take for a car that is traveling at a constant rate of 45 miles per hour to travel a distance of 22 yards?(1 mile = 1,160 yards)



A.8

B.9

C.10

D.11

E.12

答案:C,     我觉得这道题很奇怪啊,感觉没有答案,我换算得出一点多~~

Q16:

If n is a positive integer and r is the remainder when (n-1)(n+1) is divided by 24, what is the value of r?

(1)2 is not a factor of n.

(2)3 is not a factor of n.



A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.

B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.

C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.

D. EACH statement ALONE is sufficient.

E. Statements (1) and (2) TOGETHER are NOT sufficient.


答案:C,我是用举例带数字选出C,怎么算的呢~
收藏收藏 收藏收藏
沙发
发表于 2010-9-7 13:24:24 | 只看该作者
Q16:

If n is a positive integer and r is the remainder when (n-1)(n+1) is divided by 24, what is the value of r?

(1)2 is not a factor of n.

(2)3 is not a factor of n.



A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.

B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.

C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.

D. EACH statement ALONE is sufficient.

E. Statements (1) and (2) TOGETHER are NOT sufficient.


由1得出r为2k+1(k为整),由2得出r为3L+1或者3L-1(L为整)
综合得r为6m+1或者6m-1(m为整)
则(n+1)(n-1)也就是6m(6m+2)或者6m(6m-2)
也就是12m(3m+1)或者12m(3m-1)
如果m是偶数那么m可以被2整除,整个式子也就可以被24整除
如果m是奇数那么3m+1或者3m-1可以被2整除,整个式子也就可以被24整除
板凳
 楼主| 发表于 2010-9-8 22:12:20 | 只看该作者
哇,懂了懂了~~谢谢~~
地板
发表于 2010-10-14 18:40:23 | 只看该作者
是的,14题我也觉得有问题,算不出选项中的答案,是哪里看错了呢?请高人指点
5#
发表于 2010-10-15 03:02:03 | 只看该作者
another question(可能有点幼稚):怎么推出r=2k+1 or 3L-1/3L+1的?
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-9-5 03:26
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部