|
个人见解~~~ jj145通向做法 偶觉得演绎模式容易错 所以推理更好吧 A(1)=200, A(n)=200+0.2*A(n-1) 问A(40)的范围 解: A(n)+p=0.2*{A(n-1) +p} A(n)=0.2*A(n-1) -0.8p so p=-250 A(n)-250=0.2*{A(n-1) -250} so A(n)-250=a1q^n-1=(A1 -250)0.2^n-1=-50*0.2^n-1 A(n)=-50*0.2^n-1+250<250 又例如 GWD9 Q13Q13: If the sequence x1, x2, x3, …, xn, … is such that x1 = 3 and xn+1 = 2xn – 1 for n ≥ 1, then x20 – x19 =
A. 219 B. 220 C. 221 D. 220 - 1 E. 221 - 1 xn+1 +p= 2(xn +p) xn+1 = 2xn +p so p=-1 xn+1 -1= 2(xn -1) (q=2) so xn -1=a1q^n-1=(x1 -1)2^n-1=2*2^n-1=2^n xn =2^n +1 x20 – x19 =(2^20+1)-(2^19+1)=2^19 Q13: If the sequence x1, x2, x3, …, xn, … is such that x1 = 3 and xn+1 = 2xn – 1 for n ≥ 1, then x20 – x19 =
A. 219 B. 220 C. 221 D. 220 - 1 E. 221 - 1 xn+1 +p= 2(xn +p) xn+1 = 2xn +p so p=-1 xn+1 -1= 2(xn -1) (q=2) so xn -1=a1q^n-1=(x1 -1)2^n-1=2*2^n-1=2^n xn =2^n +1 x20 – x19 =(2^20+1)-(2^19+1)=2^19
[此贴子已经被作者于2009-5-13 23:15:21编辑过] |