ChaseDream
搜索
12345下一页
返回列表 发新帖
查看: 6474|回复: 47
打印 上一主题 下一主题

[阅读小分队] 【揽瓜阁5.0】Day10 2021.02.17【社会科学-科技、材料、疫苗】

[复制链接]
跳转到指定楼层
楼主
发表于 2021-2-16 22:53:24 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
  揽瓜阁俱乐部第五期
  Day10 2021.02.17



【社会科学-科技】
How machine learning is revolutionising market intelligence:The business of gathering market-sensitive information is ripe for automation
(The Economist-751 字 长阅读)

The thames seems to draw people who work on intelligence-gathering. The spooks of mi6 are housed in a funky-looking building overlooking the river. Two miles downstream, in a shared office space near Blackfriars Bridge, lives Arkera, a firm that uses machine-learning technology to sort intelligence from newspapers, websites and other public sources for emerging-market investors. Its location is happenstance. London has the right time zone, between the Americas and Asia. It is a nice place to live. The Thames happens to run through it.

Arkera’s founders, Nav Gupta and Vinit Sahni, both have a background in “macro” hedge funds, the sort that like to bet on big moves in currencies and bond and stock prices ahead of predicted changes in the political climate. The firm’s clients might want a steer on the political risks affecting public finances in Brazil, or to gauge the social pressures that could arise as a consequence of an austerity programme in Egypt. It applies machine learning to find market intelligence and make it usable.

For many people, the use of such technologies in finance is the stuff of dystopian science fiction, of machines running amok. But once you look at market intelligence through the eyes of computer science, it provokes disquieting thoughts of a different kind. It gives a sense of just how creaky and haphazard the old-school, analogue business of intelligence-gathering has been.

Analysts have used text data to try to predict changes in asset prices for a century or more. In 1933 Alfred Cowles, an economist whose grandfather had founded the Chicago Tribune, published a pioneering paper in this vein. Cowles sorted stockmarket commentary by William Peter Hamilton, a long-ruling editor of the Wall Street Journal, into three buckets (bullish, bearish or doubtful) and attached an action to each (buy, sell or avoid). He concluded that investors would have done better simply to buy and hold the leading stocks in the Dow Jones index than to follow Hamilton’s steer.

The application of machine-learning models to text-as-data might seem a world away from Cowles’s approach. But in concept, it is similar. The relevant text is sought. Values are ascribed to it. A statistical model is applied. Its predictions are tested for robustness. Of course, with bags of computing power and suites of self-learning models, the enterprise is on a different scale from Cowles’s rudimentary exercise. The endless expanse of the internet means far richer source material. The range of possible values ascribed to it will be broader than “bullish, bearish or doubtful”. And self-learning algorithms can test and retest the combinations that yield the best predictions.

It is tempting to focus on the black-box elements of all this: the language software that “reads” the source text and the algorithms that use the data to make predictions. But this is like judging a hi-fi system by its speakers. A lot of the important work comes earlier in the process. Arkera, for instance, spends a lot of effort finding all the relevant text and “cleaning” it—stripping it of extraneous junk, such as captions and disclaimers. “A good signal is crucial,” says Mr Gupta.

He gives Brazil’s pension reform as an example. The country has 513 parliamentarians. They have social-media accounts, websites and blogs. They speak to the press—Brazil has scores of regional newspapers. All are potential sources of useful data. If you cut corners at this stage you might miss something that even the best statistical model cannot fix later. There is little point in having a cool amplifier and great speakers if the stylus on your record-player is worn out.

Any good emerging-market analyst knows this, too. If you bumped into one shortly after Brazil’s elections last year, he was probably on his way to Brasília to sound out prospects for a crucial pension reform. Without it, Brazil’s public debt would be certain to explode, sparking capital flight. In July a pension bill finally passed Brazil’s lower house. Arkera’s models tracked the leanings of Brazil’s politicians to get an early sense of the likely outcome. It would be hard for an analyst working unaided to mimic this reach, even if he was always on the ground and spoke perfect Portuguese.

Intelligence-gathering is a labour-intensive business. It is thus ripe for automation. That this is happening in finance is also natural. There is a well-defined objective (to make money). There is a well-defined end-point (buy, sell or avoid). Without such clarity of purpose, intelligence is an endless river. It is one undammed thing after another.

Source: The Economist


【社会科学-材料】
Residue Stress
( WSY -346 字 短精读)


Source: WSY


【社会科学-疫苗】
The European Union has begun a mass vaccination program
(BBC-3分00秒-精听)

先做听力再核对原文哦~


BBC News. I'm John Shay. The European Union has begun a mass vaccination program to protect the 450 million people in the block against the coronavirus. The scale of the campaign means that some countries have called on retired medics to help out while others have loosened rules on who can give the injections. Damien McGuinness has more details. Across Europe, the first groups are now receiving the jab. Individual countries are deciding who goes first. Most are prioritizing the elderly and health workers. In some countries, people started vaccinated ahead of the official rollout as soon as they got the first batches. Here in Germany, a nursing home vaccinated on Saturday. So the first person in Germany to get the vaccine was a 101-year-old woman. In Hungary and Slovakia, some health workers were also vaccinated on Saturday.

Israel is entering a third coronavirus lockdown later today, which is due to last for at least 2 weeks. The Prime Minister Benjamin Netanyahu has set a goal of vaccinating around 150,000 people a day within a week. Sebastian Usher reports. Israelis made use of their last hours before the new lockdown as they packed shopping malls and parks and two big outdoor parties were held in Tel Aviv. The new restrictions will confine them to within 1 kilometer of their homes with all nonessential shops and services closed. Two previous lockdown in April and September brought infections down, but rates have been rising againm, topping 3,000 a day in the past week. Hospitals treating coronavirus in Jerusalem are close to full capacity. There's also concern of a rash of cases of a new coronavirus strain. This is all despite the vaccination rollout having started a week ago.

Polling is underway in presidential and legislative elections in the Central African Republic, where President Faustin-Archange Touadera is seeking a second term in office. The vote has been overshadowed by a rebel offensive and UN peacekeepers are patrolling the streets in the capital Bangui. Kami Lefone of the French news agency AFP in Bangui says there's little optimism about the poll. If you ask anyone here, any experts, any Central African people or any humanitarian maker, they will all tell you that they don't see how this country could change in a positive way.

Because all the major issues that were the root of the crisis, when it solved and the election, especially if they are rigged, or if a few people vote, these elections are not gonna change anything.

Ballots are also being cast in the presidential election in Niger, where voters are choosing a successor to Mahamadou Issoufou. He's stepping down after completing the permitted two terms. Handing over power to a democratically elected successor would be the first such peaceful transition in Niger history. The favorite to win is the former interior and Foreign Minister Mohamed Bazoum. This is the latest world news from the BBC.

Source: BBC


【笔记格式要求】
同学们任选 2 篇文章精读/精听并进行笔记打卡

精读笔记格式要求:
1.总结文章中心大意
2.总结分论点或每段段落大意
3.摘抄印象深刻或者觉得优美的句子
4.总结文章中的生词
5.记录阅读时间、总结时间、总时间

精听笔记格式要求:
1.逐句听写整篇文章
2.对照原文修改听写稿,标记出错原因
3.总结文章中心大意
4.总结精听过程中的生词
5.记录听写时间、总结时间、总时间

这里也给大家三点学习小建议哦~
精读:如遇到读不懂的复杂句,建议找出句子主干,分析句子成分,也可以尝试翻译句子来帮助理解~
精听:建议每句不要反复纠结听,如果听 5 遍都没听出来,那就跳过,等完成后再回听总结原因,时间宝贵,不要过于执着哦~


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
收藏收藏 收藏收藏
沙发
发表于 2021-2-17 00:27:10 | 只看该作者
Day 10

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
板凳
发表于 2021-2-17 03:59:01 | 只看该作者
打卡

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
地板
发表于 2021-2-17 08:35:15 | 只看该作者
Day10

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
5#
发表于 2021-2-17 09:06:29 | 只看该作者
(整篇文章我都在想人类情绪压力和工程建造有多大关系呢…omg)我要背点词并注意一词多义了QAQ

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
6#
发表于 2021-2-17 10:27:51 | 只看该作者
社会科学-科技
文章大意:计算机在收集信息方面的发展和成熟
1、还蛮幽默地介绍了Arkera公司,一个智能收集整理信息的公司
2、举例说明Arkera的业务
3、引出作用:尽管用计算机只能来收集信息看起来是科幻小说的事情,但这种技术可以提供一个不同的视角,让你明白老派的经济观点是多么过时
4、用数据预测资本价格变化早在上世纪或者更早就出现了:Eg: AC;而目前的方法和之前的方式殊途同归
5、介绍基本原理:收集信息-过滤掉无用信息-建模-预测+ 举例;巴西养老金改革
6、继续展开:在各种环节一定要严谨
7、总结:情报收集已经从劳动密集型转向智能领域,有一个明确的目的非常重要。

Thames泰晤士河 spook间谍、幽灵 overlook俯瞰、忽视 sort排序、分类 austerity programme紧缩财政计划  cut corners走捷径 capital flight资本外逃
clarity of purpose/well-defined/bump into遇见/sound out探听/dystopian science fiction反乌托邦科幻小说/run amok横冲直撞

阅读:10min 总结:30min

社会科学-材料
文章大意:介绍residue stress的好处,以及注意事项和目前的趋势
1、stress在大众观点中是一个负态度词,会引起断裂和各种压力有关的失败
2、新观点:stress其实有好有坏,因此测算stress很重要
3、目前在engineering design领域有一些趋势使得测算压力很重要:1、非传统材料的盛行;2、去除安全临界;3、工程系统范围上的缩小。

Hazy understanding朦胧的理解、redeem弥补

阅读:5min 总结:20min
7#
发表于 2021-2-17 10:39:31 | 只看该作者
机器学习革新市场信息收集
  • 主旨概括
    • Part 1:介绍Arkera,引入正文
      • Arkera是一家用机器学习来收集市场信息的科技公司
      • 创始人有宏观对冲基金的背景
    • Part 2:如何在金融领域运用机器学习
      • 历史
        • 大多数人怀疑会像反乌托邦科幻小说里的情节
        • 事实上使用数据来预测资产价格已长达一个世纪
      • 具体方法
        • 找到相关文本赋值,选取统计模型。预测结果再不断通过稳健性测试。
        • 自我学习算法能通过不断重复检验,从而得到最佳预测组合。
        • Arkera 需要在投入数据前进行清洗
      • 案例:巴西养老金改革为例
    • Part 3:总结
      • 市场信息收集自动化的时机已经成熟。在金融上的应用也顺理成章。
      • 但是(程序?)需要有有清晰的设定来指引,如果没有这样明确的目标,只会导致无意义的熵增。
  • 词汇
    • spook:鬼魂;幽灵 A spook is a ghost.
    • Austerity :节衣缩食;艰苦朴素 Austerity is a situation in which people's living standards are reduced because of economic .
    • Haphazard :无计划的;杂乱无章的;任意的 If you describe something as haphazard, you are critical of it because it is not at all organized or is not arranged according to a plan.
    • Dystopian: 反面假想国的;反面乌托邦的
    • Creaky:嘎吱作响的 A creaky object creaks when it moves.
    • Extraneous: 无关的;不必要的 Extraneous things are not relevant or essential to the situation you are involved in or the subject you are talking about.
    • Cut corners: 抄近路;以简便方法做事
    • capital flight :资本外逃
  • 句子
    • For many people, the use of such technologies in finance is the stuff of dystopian science fiction, of machines running amok.  
    • 对大多数人而言,在金融领域使用这些技术有点像反乌托邦科幻小说里的情节,是疯狂运行的机器产物。
    • The endless expanse of the internet means far richer source material. The range of possible values ascribed to it will be broader than “bullish, bearish or doubtful”. And self-learning algorithms can test and retest the combinations that yield the best predictions.
    • 无尽的网络扩张意味着无穷的信息资源。赋予文本的潜在价值标签也远远不止 “看涨、看跌或者不确定”。自我学习算法能通过不断重复检验,从而得到最佳预测组合。
  • 时间
    • 11+18


应力的发展
  • 主旨概括:
    • P1:所有的物质应力都具有补偿效应,应该消除这些应力
    • P2:但不引入内部应力又很难加工刚性材料。然而残余应力可能既有益又有害。
    • P3:工程设计的发展有一些趋势使得测算应力越来越重要
      • 非传统材料的流行
      • 安全边际的减小
      • 许多工程系统的规模减小
  • 生词
    • redeem:挽回;弥补;补救 When something redeems an unpleasant thing or situation, it prevents it from being completely bad.
  • 时间5+13

8#
发表于 2021-2-17 11:00:08 | 只看该作者
Day 10

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
9#
发表于 2021-2-17 11:39:22 | 只看该作者
Day 10, Feb 17, 21
阅读1
生词:ripe 成熟的;emerging market 新兴市场;happenstance 偶然事件;gauge 评估;austerity 苦行;dystopian 反乌托邦的;disquiet 使不安;analogue 类似的;ascribe 归于;robustness 鲁棒性;rudimentary 基本的;undammed 没有堤坝的。
主旨大意:机器学习在信息收集处理方面的进化以及对股票市场的影响。
段落大意及分论点:
1.        Arkera 英国公司是做机器学习的,他们的客户想通过数据服务在股市中获得机会。
2.        跟机器学习比起来,旧的信息收集方法太弱了;曾经使用文字信息得出结论,现在也差不多,但是信息几乎是无限多的,程序会洗掉无关的数据,用最紧要的信息做出判断。
3.        其中一个案例是巴西退休金改革,Arkera通过分析所有巴西议员的社交帐号,新闻发言,加上新兴市场分析对巴西公共债务的分析,判断一定会有退休金改革,分析师几乎没有办法处理这么多信息。
4.        情报收集属于劳动密集型产业,而且目标单纯,结果清晰,所以才能被这么快自动化。
阅读8分半

阅读2
生词:artisan 工匠;proliferation 增殖;microscopic
主旨大意:材料应力没有想的那么简单,它有好有坏,我们对应力的研究正在发展到一个新高度。
段落大意及分论点:
1.        跟工匠想的不一样,工程师也没办法完全掌握应力。由于它造成的各种危害,我们都认为应力应该被尽量消除。
2.        其实应力很复杂,工程师也搞不定。它存在于各种结构中,最新的研究是如何测量应力场,而非从巧取和断裂中推论。
3.        造成2的趋势有三点:1 非传统材料的增加,比如芯片和飞机翼;2 安全边际,以前的大工程安全部分太多了,不划算,要做到安全刚刚好,尤其是太空探索工程;3 工程系统规模的减小,比如微观金属连结的应力问题。
阅读7分半
10#
发表于 2021-2-17 12:03:42 | 只看该作者
文一       用时: 17min-阅读,20min-总结

1.中心意思
市场情报自动化收集已经成熟,这很自然应用在金融行业

2. 段落大意
(1)引用Arkera公司介绍自动化情报收集,和他们的客户需求
(2)介绍以前分析师的预测工作,Arkera将其创造一个数据收集和筛选的模型
(3)以巴西为例,介绍Arkera的工作带来的好处
(4)情报自动化搜集解决了高密度劳力的问题,其很好地应用在金融方面,如果没有明确目标,情报收集是无穷无尽的


3.句子摘抄

4.生词总结
thames 泰晤士河
spooks  幽灵
mi6 军情六处
housed   封装的
funky  时髦的;恶臭的
emerging   即将出现的
happenstance  偶然事件
undammed  使如决堤般流出
hedge funds 对冲基金
steer 掌控
gauge  衡量


文2        用时:8min-阅读,10min-总结
1.中心意思
余应力在工程学、材料学方面应用广泛且重要

2.段落大意
(1)所有物质内部都有应力,应该尽可能消除它
(2)然而各种材料形成过程中,余应力是难以避免的双刃剑
(3)列数三种余应力利用方式:生产刚性物质、衡量工程的安全系数、缩小工程系统的尺寸(芯片制造等)

3.句子摘抄

4.生词总结
residue stress 余应力
artisanship  手工


您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2024-11-29 16:01
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部