1. X is a positive integer. 2-height of X is defined as the greatest negative integer n where 2^n is a factor of X. K and M are two positive integers. Whether 2-height of K is greater than 2-height of M? a. K is greater than M b. K is even times of M (Key: B) (by rosemsem) 题义解析:说对于含2的n次方的数, 2-height 指的是n的值。问k和m谁的2-height大? (1) K>M (2) K除以M是偶数. (please notice K,k; M,m; e) K = a* 2^k; M = b* 2^m; (1) k>m, means nothing. (2) k/m= (a/b) * (2^k/2^m) = 2^e; A, b must be odd number, or you can extract at least one more 2, which gonna change k or m. So in this case, (a/b) must be 1, otherwise it would be a fraction. In a word, k-m=e. K>m. B is sufficient.
我觉得是不是选E呢 设
k=26*5 m=5,则k/m为偶,符合条件B。 2-height K=6 所以 2-height K>m
23*5 m=5 , 则k/m为偶,符合条件B。 2-height K=3 所以 2-height K<m
所以我觉得 2-height k 和m的大小没法确定啊。
大家看看我设的这两个数有没有问题。 |