ChaseDream
搜索
返回列表 发新帖
查看: 2001|回复: 6
打印 上一主题 下一主题

[原始] 12.18 回忆

[精华] [复制链接]
跳转到指定楼层
楼主
发表于 2018-12-18 17:12:42 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
对照了一下9.23的寂静 出现的有 55 96 136 142 149 174 条件有细微变化但是解题思路一致
可惜我没看 下个月再来

依稀记得的题:
去年profit 10m,今年亏本 问这两年的profit多少
1. 去年revenue和今年cost的关系
2. 去年cost和今年revenue的关系

红绿白三种球一共20个,红球大于10个,问绿球多少个
1.白球是绿的几倍
2 白的比绿的多几个

给了一个表 两列分别是考试成绩和次数 两列里某些是未知数 求sd
1 n=啥
2

阅读
s type 没太看懂

scaling theory
第一段讲城市设施建设
第二段动物体积 体积越大相对消耗的热量越小 大象和老鼠对比
第三段 人体器官 类似于城市交通管道设施建设

逻辑
公园决定晚上喷杀虫剂灭蚊

作文
hr想降低培训成本 提出奖励老员工做志愿者 让新员工观察学习


收藏收藏1 收藏收藏1
沙发
发表于 2018-12-18 18:26:58 | 只看该作者
亲你这不是考古啊,是原始新狗啊,如果能把标题改一下更好哦我怕整理君看不到以为你这不是新狗
非常感谢放狗!下个月继续加油
板凳
 楼主| 发表于 2018-12-18 22:43:27 | 只看该作者
sasaki720 发表于 2018-12-18 18:26
亲你这不是考古啊,是原始新狗啊,如果能把标题改一下更好哦我怕整理君看不到以为你这不是新狗
非常感谢放 ...

好谢谢 第一次发 看不太懂术语
地板
发表于 2018-12-19 03:51:17 | 只看该作者
感谢分享!               
5#
发表于 2018-12-19 08:36:25 | 只看该作者
scaling theory
第一段讲城市设施建设
第二段动物体积 体积越大相对消耗的热量越小 大象和老鼠对比
第三段 人体器官 类似于城市交通管道设施建设

https://opinionator.blogs.nytimes.com/2009/05/19/math-and-the-city/

是原文吗?

For example, suppose you measure how many calories a mouse burns per day, compared to an elephant. Both are mammals, so at the cellular level you might expect they shouldn’t be too different. And indeed, when the cells of 10 different mammalian species were grown outside their host organisms, in a laboratory tissue culture, they all displayed the same metabolic rate. It was as if they didn’t know where they’d come from; they had no genetic memory of how big their donor was.
But now consider the elephant or the mouse as an intact animal, a functioning agglomeration of billions of cells. Then, on a pound for pound basis, the cells of an elephant consume far less energy than those of a mouse. The relevant law of metabolism, called Kleiber’s law, states that the metabolic needs of a mammal grow in proportion to its body weight raised to the 0.74 power.

This 0.74 power is uncannily close to the 0.77 observed for the law governing gas stations in cities. Coincidence? Maybe, but probably not. There are theoretical grounds to expect a power close to 3/4. Geoffrey West of the Santa Fe Institute and his colleagues Jim Brown and Brian Enquist have argued that a 3/4-power law is exactly what you’d expect if natural selection has evolved a transport system for conveying energy and nutrients as efficiently and rapidly as possible to all points of a three-dimensional body, using a fractal network built from a series of branching tubes — precisely the architecture seen in the circulatory system and the airways of the lung, and not too different from the roads and cables and pipes that keep a city alive.

https://www.economist.com/blogs/freeexchange/2009/05/math_is_everywhere
6#
 楼主| 发表于 2018-12-19 13:07:20 | 只看该作者
bzy! 发表于 2018-12-19 08:36
https://opinionator.blogs.nytimes.com/2009/05/19/math-and-the-city/

是原文吗?

不完全一样
7#
发表于 2018-12-19 13:42:51 | 只看该作者
Mark一下!               
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2024-12-26 22:26
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部