, I didn't calculate the original N correctly. Apologies...
1/N1 + 1/N2 + ... + 1/Nk-1 + 1/Nk (where N1 = 101, N2 = 102... Nk-1 = 149 and Nk = 150) = 1/ [((1 + 101) * 101) / 2] + 1/ [((1 + 102) * 102) / 2] .... + 1/[((1 + 149) * 148) / 2] + 1 / [((1 + 150) * 149) / 2] = 2 / (102 * 101) + 2 / (103 * 102) + ... + 2 / (150 * 149) + 2 / (151 * 150 ) = (see note) 2* [(1/101 - 1/102) + (1/102 - 1/103) + ... + (1/149 - 1/150) + (1/150 - 1/151)] = 2*(1/101 - 1/151)
Note: Nx = (1 + x) * x / 2 & 1/101 - 1/102 = (102 - 101) / (101*102) = 1/(101*102)
[此贴子已经被作者于2006-6-11 10:58:10编辑过] |