ChaseDream
搜索
12
返回列表 发新帖
楼主: Dart1122
打印 上一主题 下一主题

[原始] 不懂重复么有的寂静悦读坐稳螺髻输血

[精华] [复制链接]
11#
发表于 2012-11-23 23:27:37 | 只看该作者
那个数学九宫格的题  中间的三个梯形面积不应该相等么?  概率不应该就是1/3 x1/3=1/9么?
12#
 楼主| 发表于 2012-11-23 23:28:55 | 只看该作者
[quote]
暂时想不起来了~~~~(>_<)~~~~ ,多亏看了你的整理,时间不够秒杀的时候好感激你的
-- by 会员 Dart1122 (2012/11/23 23:23:30)



啊,又是食物链毒素么,我发来看看

17、食物链里的毒素
1. 主题思路:
水里有种化学物质,通过食物链影响了很多生物,举了algea的例子,导致食物链高端的一些动物体内聚集了大量有毒物质。但对于mammal和bird好像并没有被有毒物质影响,貌似是因为lung的结构不同,这两者lung是转换air的,而fish靠腮,反正不一样。


2. 段落大意:
P1B是指毒素通过动物组织沿着食物链移动。这种移动在不易通过尿或者粪便排泄出去的脂溶性化学物质中是稳定的。Gobas这个人是研究B的第一人。为了反映化学物质,科学家开始使用KOW这一概念,以便观察含脂肪的化学物质是如何在水中溶解的,并且预测这种化学物质怎么通过鱼的腮,从鱼的血液里流入水中。Low-Kow说明这种水溶性的化学物质不影响鱼的食物链,并且是很安全的。

P2但是,环境学家认为这个假设不对,提出哺乳动物和鸟类可能不能排泄这种化学毒素,因为它们的肺接触空气而不是水,因此提出Koa的概念。

P3最后Gobas也说Low Kow并且highKoa的有潜在危险的,证实了Biomagnification,即毒素随着食物链的增长会沉积。

3.题目:
*Q1. algae高亮,问作用/高亮algea,问为什么举这个例子。
备选答案:海藻处在食物链最低端,毒素最低
选了因为algea是wellknown的处于低端食物链的东西。(本月710狗主 Q48,V38)

*Q2. 如果在一个Low KOW的区域的北极熊的toxic concerntration is high,infer什么
备选答案:极熊是以陆生动物为食

Q3. 哪种case符合文章第二段的情况

*Q4. 关于bear的说法正确的是?
选了其身上的毒素是从algea中积累的。                (本月710狗主 Q48,V38)

4.疑似原文:
Biomagnificationmeans that the level of toxin in animals' tissues rises as one moves up thefood chain. For instance, as larvae eat algae, fish eat the larvae, and biggerfish eat smaller fish, the toxin present in the algae becomes increasinglyconcentrated; top predators like swordfish and polar bears end up with thehighest doses in their tissues. This can happen with stable, fat-solublechemicals that aren't easily excreted in urine or feces. Biomagnification wasfirst studied in the late 1960s in aquatic food webs, explains Frank Gobas,professor at Simon Fraser University and leader of the study. To screenchemicals, scientists began using a property known as Kow, which indicates howreadily a chemical dissolves in water compared with fat and thus predicts howeasily it will move from a fish's blood lipids into water through its gills.Low-Kow, or more water soluble, chemicals don't build up in the fish food chainand were assumed to be safe.

Environmentalchemists realized, however, that this assumption might not hold in food chainsinvolving mammals and birds because their lungs are in contact with air, notwater. This means that many chemicals that are relatively soluble in water andtherefore don't accumulate in fish might remain in the tissues of land animalsif they aren't volatile enough to easily move from the lungs into the air(predicted by a property called Koa). Supporting this idea, some organicchemicals that don't biomagnify in fish appeared to be doing so in otherwildlife and humans.

Toexplore this hypothesis, Gobas and graduate student Barry Kelly and colleaguescollected plant and animal tissue samples— from lichens to beluga whales killedin Inuit hunts—in the Arctic, where, because of weather patterns and coldtemperatures, organic pollutant levels are high. They tested the samples not onlyfor known POPs but also for several chemicals with a low Kow but high Koa,which suggested they might biomagnify in air-breathing animals. The measuredlevels of contaminants for various animals in aquatic and land food webs weresimilar to those predicted from a bioaccumulation model incorporating Koa andKow, suggesting the model was correct. Chemicals with low Kow and high Koastood out as potentially risky.

B是指毒素通过动物组织沿着食物链移动。例如,幼虫larvae吃海藻algae,鱼吃幼虫,大鱼吃小鱼,毒素在海藻中的含量增加,顶层的如swordfish和polar bears的掠食者积累最多。这(化学物质在掠食者中积累)是稳定的,因为脂溶性的fat-soluble化学物质不容易通过尿urine或粪便feces排泄出去。第一次发现B是在1960sSFU的教授Frank Gobas研究水中食物网的时候。为了反映化学物质,科学家开始使用KOW来观察含脂肪的化学物质是如何在水中溶解的,并且可以预测这种化学物质怎么通过鱼的腮gill,从鱼的血液里流入水中。Low-Kow说明这种水溶性的化学物质不影响鱼的食物链,并且是很安全的。
  但是,环境化学家发现,这个假设在mammal和bird的食物链中不成立,因为他们是靠肺lung和air接触的,不是靠水。这就意味着许多水溶性的化学物质不能够在鱼的体内积累,却能够在陆地动物的体内积累,如果他们不容易挥发的话(可以用Koa来预测)。所以,一些不在鱼中进行B的化学物质却可以在其他野生动物和人类中进行B。(就是可以在mammal和bird的食物链中转移毒素)
  为了探索这个假设,Gobas和他的学生BarryKelly还有同事们收集了植物和动物的组织样本——从青苔lichens到白鲸beluga whales——在北极,由于其气候和低温,器官内的污染物质(毒素)会积累很多。他们测试这些样本不仅仅是为了知道POPs,还为了找到一些low Kow但是high Koa的化学物质,这些化学物质意味着在air-breathing animals中有B。不同动物,水或者陆地,的食物网中污染物质含量和合并Koa and Kow预测的结果相似,说明这个模型是正确的。low Kow andhigh Koa的化学物质有潜在的风险。


5.备注:
Kow水分配系数
Koa空气分配系数
-- by 会员 zxfjacob (2012/11/23 23:24:44)



就是这篇,我翻译不好,我补充的是你发的Q2那个问题
13#
 楼主| 发表于 2012-11-23 23:30:23 | 只看该作者
那个数学九宫格的题  中间的三个梯形面积不应该相等么?  概率不应该就是1/3 x1/3=1/9么?
-- by 会员 CC5 (2012/11/23 23:27:37)

没那么简单,我给的条件绝对准确,再仔细算算,我算了个4/33,不懂对了没有,我觉得可能没对。虽然我数学50
14#
发表于 2012-11-23 23:32:20 | 只看该作者
4/33是正确答案
15#
 楼主| 发表于 2012-11-23 23:35:54 | 只看该作者
还想起个(-2/3)^99约等于多少,我傻逼选了-0.5有木有,傻逼了有木有,明明是0啊啊啊
16#
 楼主| 发表于 2012-11-23 23:37:48 | 只看该作者
补充一个爱啊,我没写完时间就跳了,给了一个可排序的大表,个个国家的最高温最低温还有什么XX温之类的,可以排序,不难的,就问问八月从来就没有在任何国家成为最高温或者最低温啥的代表啊,还有两个问我还没写,时间就到了!泪奔
17#
发表于 2012-11-23 23:39:40 | 只看该作者
那个数学九宫格的题  中间的三个梯形面积不应该相等么?  概率不应该就是1/3 x1/3=1/9么?
-- by 会员 CC5 (2012/11/23 23:27:37)


没那么简单,我给的条件绝对准确,再仔细算算,我算了个4/33,不懂对了没有,我觉得可能没对。虽然我数学50
-- by 会员 Dart1122 (2012/11/23 23:30:23)





但是根据你的狗狗...这么算的flaw是什么啊....??


原谅我笨...谢谢╭(╯3╰)╮
18#
发表于 2012-11-23 23:54:36 | 只看该作者
梯形上边3,下底5,高3,算出面积12。梯形所在的大长方形面积3X11=33。这个长方型面积只占整个面积1/3.所以12/(33X3)=4/33
19#
发表于 2012-11-24 12:32:15 | 只看该作者
[quote]
暂时想不起来了~~~~(>_<)~~~~ ,多亏看了你的整理,时间不够秒杀的时候好感激你的
-- by 会员 Dart1122 (2012/11/23 23:23:30)




啊,又是食物链毒素么,我发来看看

17、食物链里的毒素
1. 主题思路:
水里有种化学物质,通过食物链影响了很多生物,举了algea的例子,导致食物链高端的一些动物体内聚集了大量有毒物质。但对于mammal和bird好像并没有被有毒物质影响,貌似是因为lung的结构不同,这两者lung是转换air的,而fish靠腮,反正不一样。


2. 段落大意:
P1B是指毒素通过动物组织沿着食物链移动。这种移动在不易通过尿或者粪便排泄出去的脂溶性化学物质中是稳定的。Gobas这个人是研究B的第一人。为了反映化学物质,科学家开始使用KOW这一概念,以便观察含脂肪的化学物质是如何在水中溶解的,并且预测这种化学物质怎么通过鱼的腮,从鱼的血液里流入水中。Low-Kow说明这种水溶性的化学物质不影响鱼的食物链,并且是很安全的。

P2但是,环境学家认为这个假设不对,提出哺乳动物和鸟类可能不能排泄这种化学毒素,因为它们的肺接触空气而不是水,因此提出Koa的概念。

P3最后Gobas也说Low Kow并且highKoa的有潜在危险的,证实了Biomagnification,即毒素随着食物链的增长会沉积。

3.题目:
*Q1. algae高亮,问作用/高亮algea,问为什么举这个例子。
备选答案:海藻处在食物链最低端,毒素最低
选了因为algea是wellknown的处于低端食物链的东西。(本月710狗主 Q48,V38)

*Q2. 如果在一个Low KOW的区域的北极熊的toxic concerntration is high,infer什么
备选答案:极熊是以陆生动物为食

Q3. 哪种case符合文章第二段的情况

*Q4. 关于bear的说法正确的是?
选了其身上的毒素是从algea中积累的。                (本月710狗主 Q48,V38)

4.疑似原文:
Biomagnificationmeans that the level of toxin in animals' tissues rises as one moves up thefood chain. For instance, as larvae eat algae, fish eat the larvae, and biggerfish eat smaller fish, the toxin present in the algae becomes increasinglyconcentrated; top predators like swordfish and polar bears end up with thehighest doses in their tissues. This can happen with stable, fat-solublechemicals that aren't easily excreted in urine or feces. Biomagnification wasfirst studied in the late 1960s in aquatic food webs, explains Frank Gobas,professor at Simon Fraser University and leader of the study. To screenchemicals, scientists began using a property known as Kow, which indicates howreadily a chemical dissolves in water compared with fat and thus predicts howeasily it will move from a fish's blood lipids into water through its gills.Low-Kow, or more water soluble, chemicals don't build up in the fish food chainand were assumed to be safe.

Environmentalchemists realized, however, that this assumption might not hold in food chainsinvolving mammals and birds because their lungs are in contact with air, notwater. This means that many chemicals that are relatively soluble in water andtherefore don't accumulate in fish might remain in the tissues of land animalsif they aren't volatile enough to easily move from the lungs into the air(predicted by a property called Koa). Supporting this idea, some organicchemicals that don't biomagnify in fish appeared to be doing so in otherwildlife and humans.

Toexplore this hypothesis, Gobas and graduate student Barry Kelly and colleaguescollected plant and animal tissue samples— from lichens to beluga whales killedin Inuit hunts—in the Arctic, where, because of weather patterns and coldtemperatures, organic pollutant levels are high. They tested the samples not onlyfor known POPs but also for several chemicals with a low Kow but high Koa,which suggested they might biomagnify in air-breathing animals. The measuredlevels of contaminants for various animals in aquatic and land food webs weresimilar to those predicted from a bioaccumulation model incorporating Koa andKow, suggesting the model was correct. Chemicals with low Kow and high Koastood out as potentially risky.

B是指毒素通过动物组织沿着食物链移动。例如,幼虫larvae吃海藻algae,鱼吃幼虫,大鱼吃小鱼,毒素在海藻中的含量增加,顶层的如swordfish和polar bears的掠食者积累最多。这(化学物质在掠食者中积累)是稳定的,因为脂溶性的fat-soluble化学物质不容易通过尿urine或粪便feces排泄出去。第一次发现B是在1960sSFU的教授Frank Gobas研究水中食物网的时候。为了反映化学物质,科学家开始使用KOW来观察含脂肪的化学物质是如何在水中溶解的,并且可以预测这种化学物质怎么通过鱼的腮gill,从鱼的血液里流入水中。Low-Kow说明这种水溶性的化学物质不影响鱼的食物链,并且是很安全的。
  但是,环境化学家发现,这个假设在mammal和bird的食物链中不成立,因为他们是靠肺lung和air接触的,不是靠水。这就意味着许多水溶性的化学物质不能够在鱼的体内积累,却能够在陆地动物的体内积累,如果他们不容易挥发的话(可以用Koa来预测)。所以,一些不在鱼中进行B的化学物质却可以在其他野生动物和人类中进行B。(就是可以在mammal和bird的食物链中转移毒素)
  为了探索这个假设,Gobas和他的学生BarryKelly还有同事们收集了植物和动物的组织样本——从青苔lichens到白鲸beluga whales——在北极,由于其气候和低温,器官内的污染物质(毒素)会积累很多。他们测试这些样本不仅仅是为了知道POPs,还为了找到一些low Kow但是high Koa的化学物质,这些化学物质意味着在air-breathing animals中有B。不同动物,水或者陆地,的食物网中污染物质含量和合并Koa and Kow预测的结果相似,说明这个模型是正确的。low Kow andhigh Koa的化学物质有潜在的风险。


5.备注:
Kow水分配系数
Koa空气分配系数
-- by 会员 zxfjacob (2012/11/23 23:24:44)




就是这篇,我翻译不好,我补充的是你发的Q2那个问题
-- by 会员 Dart1122 (2012/11/23 23:28:55)

LZ,Q2的补充是神马啊???
20#
 楼主| 发表于 2012-11-24 16:46:43 | 只看该作者
[quote]
暂时想不起来了~~~~(>_<)~~~~ ,多亏看了你的整理,时间不够秒杀的时候好感激你的
-- by 会员 Dart1122 (2012/11/23 23:23:30)





啊,又是食物链毒素么,我发来看看

17、食物链里的毒素
1. 主题思路:
水里有种化学物质,通过食物链影响了很多生物,举了algea的例子,导致食物链高端的一些动物体内聚集了大量有毒物质。但对于mammal和bird好像并没有被有毒物质影响,貌似是因为lung的结构不同,这两者lung是转换air的,而fish靠腮,反正不一样。


2. 段落大意:
P1B是指毒素通过动物组织沿着食物链移动。这种移动在不易通过尿或者粪便排泄出去的脂溶性化学物质中是稳定的。Gobas这个人是研究B的第一人。为了反映化学物质,科学家开始使用KOW这一概念,以便观察含脂肪的化学物质是如何在水中溶解的,并且预测这种化学物质怎么通过鱼的腮,从鱼的血液里流入水中。Low-Kow说明这种水溶性的化学物质不影响鱼的食物链,并且是很安全的。

P2但是,环境学家认为这个假设不对,提出哺乳动物和鸟类可能不能排泄这种化学毒素,因为它们的肺接触空气而不是水,因此提出Koa的概念。

P3最后Gobas也说Low Kow并且highKoa的有潜在危险的,证实了Biomagnification,即毒素随着食物链的增长会沉积。

3.题目:
*Q1. algae高亮,问作用/高亮algea,问为什么举这个例子。
备选答案:海藻处在食物链最低端,毒素最低
选了因为algea是wellknown的处于低端食物链的东西。(本月710狗主 Q48,V38)

*Q2. 如果在一个Low KOW的区域的北极熊的toxic concerntration is high,infer什么
备选答案:极熊是以陆生动物为食

Q3. 哪种case符合文章第二段的情况

*Q4. 关于bear的说法正确的是?
选了其身上的毒素是从algea中积累的。                (本月710狗主 Q48,V38)

4.疑似原文:
Biomagnificationmeans that the level of toxin in animals' tissues rises as one moves up thefood chain. For instance, as larvae eat algae, fish eat the larvae, and biggerfish eat smaller fish, the toxin present in the algae becomes increasinglyconcentrated; top predators like swordfish and polar bears end up with thehighest doses in their tissues. This can happen with stable, fat-solublechemicals that aren't easily excreted in urine or feces. Biomagnification wasfirst studied in the late 1960s in aquatic food webs, explains Frank Gobas,professor at Simon Fraser University and leader of the study. To screenchemicals, scientists began using a property known as Kow, which indicates howreadily a chemical dissolves in water compared with fat and thus predicts howeasily it will move from a fish's blood lipids into water through its gills.Low-Kow, or more water soluble, chemicals don't build up in the fish food chainand were assumed to be safe.

Environmentalchemists realized, however, that this assumption might not hold in food chainsinvolving mammals and birds because their lungs are in contact with air, notwater. This means that many chemicals that are relatively soluble in water andtherefore don't accumulate in fish might remain in the tissues of land animalsif they aren't volatile enough to easily move from the lungs into the air(predicted by a property called Koa). Supporting this idea, some organicchemicals that don't biomagnify in fish appeared to be doing so in otherwildlife and humans.

Toexplore this hypothesis, Gobas and graduate student Barry Kelly and colleaguescollected plant and animal tissue samples— from lichens to beluga whales killedin Inuit hunts—in the Arctic, where, because of weather patterns and coldtemperatures, organic pollutant levels are high. They tested the samples not onlyfor known POPs but also for several chemicals with a low Kow but high Koa,which suggested they might biomagnify in air-breathing animals. The measuredlevels of contaminants for various animals in aquatic and land food webs weresimilar to those predicted from a bioaccumulation model incorporating Koa andKow, suggesting the model was correct. Chemicals with low Kow and high Koastood out as potentially risky.

B是指毒素通过动物组织沿着食物链移动。例如,幼虫larvae吃海藻algae,鱼吃幼虫,大鱼吃小鱼,毒素在海藻中的含量增加,顶层的如swordfish和polar bears的掠食者积累最多。这(化学物质在掠食者中积累)是稳定的,因为脂溶性的fat-soluble化学物质不容易通过尿urine或粪便feces排泄出去。第一次发现B是在1960sSFU的教授Frank Gobas研究水中食物网的时候。为了反映化学物质,科学家开始使用KOW来观察含脂肪的化学物质是如何在水中溶解的,并且可以预测这种化学物质怎么通过鱼的腮gill,从鱼的血液里流入水中。Low-Kow说明这种水溶性的化学物质不影响鱼的食物链,并且是很安全的。
  但是,环境化学家发现,这个假设在mammal和bird的食物链中不成立,因为他们是靠肺lung和air接触的,不是靠水。这就意味着许多水溶性的化学物质不能够在鱼的体内积累,却能够在陆地动物的体内积累,如果他们不容易挥发的话(可以用Koa来预测)。所以,一些不在鱼中进行B的化学物质却可以在其他野生动物和人类中进行B。(就是可以在mammal和bird的食物链中转移毒素)
  为了探索这个假设,Gobas和他的学生BarryKelly还有同事们收集了植物和动物的组织样本——从青苔lichens到白鲸beluga whales——在北极,由于其气候和低温,器官内的污染物质(毒素)会积累很多。他们测试这些样本不仅仅是为了知道POPs,还为了找到一些low Kow但是high Koa的化学物质,这些化学物质意味着在air-breathing animals中有B。不同动物,水或者陆地,的食物网中污染物质含量和合并Koa and Kow预测的结果相似,说明这个模型是正确的。low Kow andhigh Koa的化学物质有潜在的风险。


5.备注:
Kow水分配系数
Koa空气分配系数
-- by 会员 zxfjacob (2012/11/23 23:24:44)





就是这篇,我翻译不好,我补充的是你发的Q2那个问题
-- by 会员 Dart1122 (2012/11/23 23:28:55)


LZ,Q2的补充是神马啊???
-- by 会员 zxfjacob (2012/11/24 12:32:15)



Q2. 如果在一个Low KOW的区域的北极熊的toxic concerntration is high,infer什么
备选答案:极熊是以陆生动物为食
就是这个问题呀,我补充了另外两个选项而已。。我一共记得三个选项A。这个熊吃很多种鱼,B这个熊住在有工业污染的环境附近,C,这个熊吃了某种陆地生物。我也选的C,这个熊吃了某种陆地生物
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-6-9 21:43
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部