讨论稿里不是有咩 答案:abc=100a+10b+c,cba=100c+10b+c 因为abc与cba除以7的余数相同,则有(abc-cba)能被7整除 abc-cba=99(a-c) 若a=c,a=1,2,3,4,5,6,7,8,9 有:101,111,121,131,141,151,161,171,181,191, 202,212,222,232,242,252,262,272,282,292, ....... 其中i=1,2,3,4,5,6,7,8,9 共90个; 若a≠c, a=1,c=8, 108,118,128,138,148,158,168,178,188,198 或a=2,c=9, 209,219,229,239,249,259,269,279,289,299 或a=8,c=1, 801,811,821,831,841,851,861,871,881,891 或a=9,c=2, 902,912,922,932,942,952,962,972,982,992 共40个; 符合条件的数字一共有90+40=130个 -- by 会员 灵月紫凝 (2012/3/11 17:55:51)
如果 abc 是三個不同數便要小心了!! 考試看清楚題目. |