If x and y are positive integers, there exist unique integers q and r, called the quotient and remainder, respectively, such that y = xq + r and 0 ≤ r < x. For example, when 28 is divided by 8, the quotient is 3 and the remainder is 4 since 28 = (8)(3) + 4. Note that y is divisible by x if and only if the remainder r is 0; for example, 32 has a remainder of 0 when divided by 8 since 32 is divisible by 8.