ChaseDream
搜索
返回列表 发新帖
查看: 650|回复: 0
打印 上一主题 下一主题

manhattan里面的一道DS题 求解

[复制链接]
跳转到指定楼层
楼主
发表于 2011-7-21 17:49:57 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
只有几天就要考试了,用manhattan模考了一下,备受打击啊!!
这个题目做的时候题目就没看懂,现在答案也完全不懂!!

Is the positive integer N a perfect square?

(1) The number of distinct factors of N is even.
(2) The sum of all distinct factors of N is even.


(1) SUFFICIENT: The factors of any number N can be sorted into pairs that multiply to give N. (For instance, the factors of 24 can be paired as follows: 1 and 24; 2 and 12; 3 and 8; 4 and 6.) However, if N is a perfect square, one of these ‘pairs’ will consist of just one number: the square root of N. (For example, if N were 49, it would ahve the factor pair 7 × 7) Since all of the other factors can be paired off, it follows that if N is a perfect square, then N has an odd number of factors. (If N is not a perfect square, then all of its factors can be paired off, so it will have an even number of factors.) This statement then implies that N is not a perfect square.

(2) SUFFICIENT: Let N be a perfect square. If N is odd, then all factors of N are odd. Therefore, by the above reasoning, N has an odd number of odd factors, so their sum must be odd. If N is even, let M be the product of all the odd prime factors (as many times as they appear in N – not distinct) of N, which is also a perfect square. (For instance, if N = 100, then M =5 × 5 = 25.) Then the sum of factors of M is odd, by the above reasoning. Furthermore, all other factors of N (i.e., that don’t also divide M) are even. The sum total is thus odd + even = odd.
Therefore, the sum of the factors of any perfect square is odd, so this statement implies that N is not a perfect square.
This statement can also be investigated by trying several cases of even perfect squares (4, 16, 36, 64, 100), noting that in each case the sums of the factors are odd, and generalizing.

The correct answer is D.
收藏收藏 收藏收藏
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-10-4 13:19
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部