ChaseDream
搜索
返回列表 发新帖
查看: 969|回复: 3
打印 上一主题 下一主题

GWD 17-20

[复制链接]
跳转到指定楼层
楼主
发表于 2011-6-30 20:23:40 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
For any integers x and y, min(x, y) and max(x, y) denote the minimum and the maximum of x and y, respectively.For example, min(5, 2) = 2 and max(5, 2) = 5.For the integer w, what is the value of min(10, w) ?
(1)w = max(20, z) for some integer z.
(2)w = max(10, w)

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D. EACH statement ALONE is sufficient.
E. Statements (1) and (2) TOGETHER are NOT sufficient.

答案选D.

第一项是怎么退出来的,一个是w,一个是z。谢谢。
收藏收藏 收藏收藏
沙发
发表于 2011-7-1 09:45:21 | 只看该作者
For any integers x and y, min(x, y) and max(x, y) denote the minimum and the maximum of x and y, respectively.For example, min(5, 2) = 2 and max(5, 2) = 5.For the integer w, what is the value of min(10, w) ?
(1)w = max(20, z) for some integer z.
(2)w = max(10, w)

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D. EACH statement ALONE is sufficient.
E. Statements (1) and (2) TOGETHER are NOT sufficient.

答案选D.

第一项是怎么退出来的,一个是w,一个是z。谢谢。
-- by 会员 nedvedxmu (2011/6/30 20:23:40)



w=z>20
板凳
发表于 2011-7-1 11:37:54 | 只看该作者
首先 value of min(10,w) 需要知道10和w谁大谁小
如果10〉w 那么value of min(10,w)就等于w,反之,如果10《w 那么value of min(10,w)就等于w
问题就是w是大于10还是小于10

1)W=MAX(20,Z)
    If Z<20, w=max(20,z)=20; w=20>10
    if z>20, w=max(20,z)=z>10, w=z>10
whatever the value of z, w is always > 10 so it is sufficient

2) w=max(10,w) indicates that w>10
so it is sufficient,too
地板
 楼主| 发表于 2011-7-1 23:23:07 | 只看该作者
多谢!
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-7-28 07:45
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部