ChaseDream
搜索
返回列表 发新帖
查看: 1135|回复: 2
打印 上一主题 下一主题

牛人帮我解答一下这道数学题吧!我一点思路都没有!

[复制链接]
跳转到指定楼层
楼主
发表于 2011-6-30 20:10:53 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
If the integer n has exactly three positive divisors, including 1 and n, How many positive divisor does n^2 have?
小女子在这里叩谢各位神人!
收藏收藏 收藏收藏
沙发
发表于 2011-6-30 21:16:56 | 只看该作者
If the integer n has exactly three positive divisors, including 1 and n, How many positive divisor does n^2 have?
小女子在这里叩谢各位神人!
-- by 会员 zt1127 (2011/6/30 20:10:53)



不是神人,但这题我在上xdf的时候,老师说过
如果一个数N有奇数个因子,那么N为平方数即4、9、16、25……
这样,假设N=4,那么N^2=16=2^4,则N^2有5个因子
板凳
发表于 2011-6-30 21:18:16 | 只看该作者
If the integer n has exactly three positive divisors, including 1 and n, How many positive divisor does n^2 have?

If the integer n has exactly three positive divisors, including 1 and n, then n is a square of another integer m, or n=m*m. In this way, n, or m^2, has three positive divisors: 1, m, and m^2.

Then n^2, which is m^4, will have 1, m, m^2, m^3, and m^4, 5 divisors or factors.
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-6-26 14:37
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部