ChaseDream
搜索
12下一页
返回列表 发新帖
查看: 1191|回复: 13
打印 上一主题 下一主题

GMAT 数学题(8)

[复制链接]
跳转到指定楼层
楼主
发表于 2011-1-4 10:03:58 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
请问 ( 5999 + 6999 ) 的最小质因数是多少?为什么?
收藏收藏 收藏收藏
沙发
发表于 2011-1-4 11:59:40 | 只看该作者
答案是2么?
板凳
 楼主| 发表于 2011-1-4 12:01:40 | 只看该作者
答案是2么?
-- by 会员 沉睡的巨人 (2011/1/4 11:59:40)



No way.  5^n is an odd number.  6^n is an even number.  The sum of the two is an odd number.
地板
发表于 2011-1-4 12:37:58 | 只看该作者
答案是3么?
5#
 楼主| 发表于 2011-1-4 12:41:28 | 只看该作者
答案是3么?
-- by 会员 cherry12345 (2011/1/4 12:37:58)



No.  Because 5^n cannot be devided by 3 while 6^n definitely can.  Therefore the sum of 5^999 and 6^999 cannot be devided by 3.
6#
 楼主| 发表于 2011-1-4 12:51:14 | 只看该作者
By now, you propably can figure out that 5 is not a factor, either, since 6^n cannot be devided by 5.

What about 7?  

What about 11?

What about 13?

And why the above numbers can or cannot be the factor of the sum?
7#
发表于 2011-1-4 13:01:13 | 只看该作者
What about 11? As 11 is the least common factor of 5 and 6.
8#
 楼主| 发表于 2011-1-4 13:02:57 | 只看该作者
What about 11? As 11 is the least common factor of 5 and 6.
-- by 会员 cherry12345 (2011/1/4 13:01:13)




I am curious about 11 as well.  However, how can you prove that the sum of ( 5999 + 6999 )  can be devided by 11, or the sum of 5 and 6???
9#
发表于 2011-1-4 13:06:33 | 只看该作者
I think 999 is an odd number, since 11 is the common factor of 5 and 6, so it could be devided by 11, or the sum of 5 and 6.  I am not sure if this is right, as 7 and 13 cannot work.
10#
发表于 2011-1-4 15:36:47 | 只看该作者
是11

(a+b)^n-a^n-b^n必然有(a+b)的因子
根据 杨辉三角
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-9-28 16:48
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部