ChaseDream
搜索
12
返回列表 发新帖
楼主: sdcar2010
打印 上一主题 下一主题

GMAT 数学题(7)

[复制链接]
11#
发表于 2011-1-3 23:13:19 | 只看该作者
One more deduction:

n 为正整数。问 n 最大为多少能让 (2m)! 整除 2n

The answer is : n = 2m - 1

For 2!, n = 1
For 4!, n = 3
For 8!, n = 7
For 16!, n = 15
For 32!, n = 31
For 64!, n = 63
For 128!, n = 127
. . . . .
-- by 会员 sdcar2010 (2011/1/3 23:03:56)



It is really smart!

Thanks.
12#
发表于 2011-1-4 00:00:25 | 只看该作者
One more deduction:

n 为正整数。问 n 最大为多少能让 (2m)! 整除 2n

The answer is : n = 2m - 1

For 2!, n = 1
For 4!, n = 3
For 8!, n = 7
For 16!, n = 15
For 32!, n = 31
For 64!, n = 63
For 128!, n = 127
. . . . .
-- by 会员 sdcar2010 (2011/1/3 23:03:56)




得通过你列的那一溜推出等比数列先!厉害!!
我也马克下,这一步很销魂阿
2) If we repeat step (1) on (25)!, we will get

(26)! = (22^5) * [(25)!] = (22^5) * (22^4) * [(24)!] = . . . = (22^5) * (22^4) * (22^3) * (22^2) (22^1) * (22^0)

        = 2
(2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0)

        = 2
n
13#
 楼主| 发表于 2011-1-5 22:57:49 | 只看该作者
As it turned out, one of the recent questions from JJ is following the same analytical path used here:

(Original wrong info about a GMAT question)209. What is the greatest number for n such that 2^n divides 2!/8! ?
选项大概有:2,3,4,6,8 (哈我给了6个选项了)

参考答案: 待定

思路:题干得出的等式为2!/(8!*2^n)还是2^n*8!/2!?


(Confired right info about the GMAT question) What is the greatest number for n such that 2^n divides 8!/2! ?
我的最后一道题 很明确
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-5-6 23:26
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部