- UID
- 523103
- 在线时间
- 小时
- 注册时间
- 2010-3-28
- 最后登录
- 1970-1-1
- 主题
- 帖子
- 性别
- 保密
|
125. If ° represents one of the operations +, –, and ×, is k ° (??e + m) = (k °e ?? ) + (k ° m) for all numbers k, ?? , and m ? (1) k ° 1 is not equal to 1 ° k for some numbers k. (2) ° represents subtraction. Arithmetic Properties of numbers (1) For operations + and ×, k ° 1 is equal to 1 ° k since both k + 1 = 1 + k, and also k × 1 = 1 × k. Th erefore, the operation represented must be subtraction. From this, it is possible to determine whether k – (??e + m) = (k – e??) + (k – m) holds for all numbers k, e??, and m; SUFFICIENT. (2) Th e information is given directly that the operation represented is subtraction. Once again, it can be determined whether k – (??e + m) = (k – e??) + (k – m) holds for all numbers k, e??, and m; SUFFICIENT. Th e correct answer is D; each statement alone is sufficient. 疑问, 如题,这两个条件已经假设或者能推出来,°这此题目中,代表减法。 于是k ° (??e + m) = (k °e ?? ) + (k ° m)就相当于 k-(e+m)=k-e +k-m= 2k-e-m。然而,2k-e-m很明显不等于k-(e+m),除了k=0时。 显然,当°是减法的时候,两个条件都不能推出来 k ° (??e + m) = (k °e ?? ) + (k ° m) for all numbers k, ?? , and m(除了K=0时)。难道这道题就是想问,两个条件单独或者一起能否满足 k ° (??e + m) = (k °e ?? ) + (k ° m) for all numbers k, e and m。即使°不能满足等式对所有的k,e,m有效,只要能证明°不是对所有k,e,m有效,也可以说这个条件是充分的? 不好意思,说的有点乱,希望大家能理解我的问题,帮我看看,这个真是恶心死我了。我看答案能倒推回来,但是就是觉得这个题有问题(也可能是我自己的理解能力有问题)。 |
|