ChaseDream
搜索
返回列表 发新帖
查看: 781|回复: 7
打印 上一主题 下一主题

[求助] MA PREP2-PS-112 已解决 谢谢大家

[复制链接]
楼主
发表于 2009-3-28 20:12:00 | 只看该作者

[求助] MA PREP2-PS-112 已解决 谢谢大家

112. For a certain race, 3 teams were allowed to enter 3 members each.  A team earned 6 - n points whenever one of its members finished in nth place, where 1 <= n <= 5.  There were no ties, disqualifications, or withdrawals.  If no team earned more than 6 points, what is the least possible score a team could have earned?

 

(A) 0 

(B) 1 

(C) 2

(D) 3

(E) 4


题目的意思不是很明白

求NN的解


[此贴子已经被作者于2009-3-29 19:51:57编辑过]
沙发
 楼主| 发表于 2009-3-28 20:19:00 | 只看该作者
答案是D

以下是我google到国外网站的解释:

解一:1st team gets 6 points (with 2 racers), 2nd team gets 6 points (with 2 racers)....so the 3rd team must get 3 (with one racer)

解二:The points awarded are: 
1st - 5 
2nd - 4 
3rd - 3 
4th - 2 
5th - 1 

So, we have a total of 15 points awarded. We want to minimize the points earned by one of the teams. On GMAT minimization questions, we want to MAXIMIZE everything else. We know that no team earned MORE than 6 points. So, let's give teams 1 and 2 their maximum total points, 6 each. Those two teams account for 12/15 points, which means that team 3 earned the remaining 3 points: choose (D).


但我还是不太理解 比如题目说每队有3人参加,共3队 可哪里讲了解一解二说的只有5个队员排前5名???

[此贴子已经被作者于2009-3-28 20:21:02编辑过]
板凳
发表于 2009-3-28 23:46:00 | 只看该作者
顶一哈,实在费解
地板
 楼主| 发表于 2009-3-29 17:26:00 | 只看该作者
再顶
5#
发表于 2009-3-29 17:39:00 | 只看该作者

There were no ties, disqualifications, or withdrawals.

我觉得这个就是问题所在吧, 所以说只有5个人前5名阿

6#
发表于 2009-3-29 18:56:00 | 只看该作者

每对出3人,计9个人参加比赛。

第一名:6-1=5,第二名:6-2=4,第三名:6-3=3,第四名:6-4=2,第五名:6-5=1,

第六名:6-6=0,第七名:0,第八名:0,第九名:0。

题问:那个对可能获最小分数,那只有可能其它两队得较高的分数;同时,题中又说“no team earned more than 6 points”,故获高分的两队只有可能是:5+1和4+2两个分数,那么“可能获最小分数”的对则只能是“3+0=3”了。

7#
 楼主| 发表于 2009-3-29 19:14:00 | 只看该作者
终于明白啦!

谢谢大家!!!
8#
发表于 2009-3-30 13:21:00 | 只看该作者
多谢大家,,,这个题目也太纠结了
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-11-25 22:44
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部