|
以下是引用wangxiaoqing在2009-2-8 5:04:00的发言: 184. is x^2 + y even, x and y are postive 1) x, y are consective integers 2) x + 2y = 1
1 is right 2 is not right
2: x=1-2y
x^2+y= (1-2y)^2+y= 4y^2-3y+1
for 2, x and y are not integers but fractions. so x^2+y is fractions, so for sure we know they are not even or odd integers so B is fine
so Answer should be D
x^2+y= (1-2y)^2+y= 4y^2-3y+1
if, when y=1, then 4y^2-3y+1=2, so x^2+y=2 & y=1.....so x=1 so answer is A?????????
***************************************************************** 方法太繁琐了。。 简单一点考虑 题目中已说明x,y为正,由(i),又得知为相连的正整数。可简单取奇偶,偶奇两组数带入,看x^2 + y 的奇偶性是否唯一 2,3 =〉2^2+3=7 3,4=〉3^2+4=13 可推出x^2 + y 必为奇数 ,(i)对 题目中已说明x,y为正,加上(ii),得出x,y必为分数。则x^2 + y 也为分数,无奇偶性,也就是说一定不是偶数,(ii)对 答案为D
[此贴子已经被作者于2009-2-8 22:15:29编辑过] |