ChaseDream
搜索
返回列表 发新帖
查看: 716|回复: 4
打印 上一主题 下一主题

来一道GMAT_PREP难题

[复制链接]
楼主
发表于 2008-6-26 22:14:00 | 只看该作者

来一道GMAT_PREP难题

A certain jar contains only b black marbles, w white marbles, and r red marbles, if one marble is to be chosen at random from the jar, is the probability that the marble chosen will be red greater than the probability that the marble chosen will be white.

(1) r / (b+w) > w / (b+r)

(2) b-w > r

答案选A, 我不明白怎么算的

请高人指点我一下,请各位讲的详细一些,谢谢了

沙发
发表于 2008-6-26 23:03:00 | 只看该作者

We need to state that R>W
1) r/(b+w) > w/(b+r), add 1 on each side and solve the fraction
it will be (r+b+w)/b+w > (r+b+w)/b+r => from this we can say r > w

2) can't say anythinf about relation between r&B...insuff

Hence, A is the answer.

Am I doing any wrong??

板凳
发表于 2008-6-26 23:04:00 | 只看该作者
请标明题号,方便以后查找
还有,发贴前请先查询,查询方法:

http://forum.chasedream.com/dispbbs.asp?boardID=22&ID=329391&page=1
这里有大部分讨论汇总链接
找到prep
然后
http://forum.chasedream.com/dispbbs.asp?BoardID=22&replyID=1404763&id=150752&skin=0
用crtl + f找到你的题目
然后去相应楼层找到解答,谢谢
地板
发表于 2008-6-26 23:05:00 | 只看该作者

I think some elaboration is required:

r/(b+w) > w/(b+r)

r/(b+w) + 1 > w/(b+r) + 1

r/(b+w) + (b+w)/(b+w) > w/(b+r) + (b+r)/(b+r)

r/(b+w) + (b+w)/(b+w) > w/(b+r) + (b+r)/(b+r)

(r+b+w)/(b+w) > (r+b+w)/(b+r)

1/(b+w) > 1/(b+r) [Divided both sides by (r + b + w)]

b+r > b+w

r > w

Note: Don't worry about the inequality being switched because in this probelm you know that you'll always be working with positive integers. [You can't have negative number of marbles]

5#
发表于 2008-6-26 23:14:00 | 只看该作者
bth is good! Li Hai.
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-10-17 00:54
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部