我想问问下面这两个题需要排除非整数的可能吗?如果不需要,第一题是不是该选A呢?数学不好,想不清楚这个问题。请指教,谢谢!! 121. x^2-y^2=37,问是否能确定x和y的具体值。 (1) x, y>0,(2) x, y 是整数。 条件1,x和y是正数。可以有无数多的组合使x^2-y^2=37,不充分 条件2,(x+y)(x-y)=37,先考虑两个都正:37是质数,只能被1和自己整除,那么x+y=37,x-y=1,那么x=19,y=18。再考虑两个都是负数,那么x+y=-37,x-y=-1,于是x=-19,y=-18。答案不唯一,不充分 两条件一起考虑,是正整数,那么只可能是x=19,y=18,充分 KEY:C
这个题目的另一形式 27. x^2+y^2=37, 问x, y是多少 1) x, y>0 2) x, y 是整数 我选B
What type DS. 1) the equation is a expression of a circle with radius of r=square root 37. x,y>0 gives no solution at all; not sufficient 2) remember the equation is a circle, which is symmetric about the axes, there must be always two pairs of solutions if it is solvable based 2), therefore its solution is NOT unique. Hence NOT sufficient. Let us check our assumption: (1,6) (6,1) (-1,-6) (-6,-1)
1+2à still there are two solutions (1,6) OR (6,1) Not sufficient.
I think, GMAT consider two solutions instead of one unique solution Incorrect!! Please discuss this..
Key: E (None sufficient, together still not sufficient)
121. x^2-y^2=37,问是否能确定x和y的具体值。 (1) x, y>0,(2) x, y 是整数。 条件1,x和y是正数。可以有无数多的组合使x^2-y^2=37,不充分 条件2,(x+y)(x-y)=37,先考虑两个都正:37是质数,只能被1和自己整除,那么x+y=37,x-y=1,那么x=19,y=18。再考虑两个都是负数,那么x+y=-37,x-y=-1,于是x=-19,y=-18。答案不唯一,不充分 两条件一起考虑,是正整数,那么只可能是x=19,y=18,充分 KEY:C
这个题目的另一形式 27. x^2+y^2=37, 问x, y是多少 1) x, y>0 2) x, y 是整数 我选B
What type DS. 1) the equation is a expression of a circle with radius of r=square root 37. x,y>0 gives no solution at all; not sufficient 2) remember the equation is a circle, which is symmetric about the axes, there must be always two pairs of solutions if it is solvable based 2), therefore its solution is NOT unique. Hence NOT sufficient. Let us check our assumption: (1,6) (6,1) (-1,-6) (-6,-1)
1+2à still there are two solutions (1,6) OR (6,1) Not sufficient.
I think, GMAT consider two solutions instead of one unique solution Incorrect!! Please discuss this..
Key: E (None sufficient, together still not sufficient) |