ChaseDream
搜索
12下一页
返回列表 发新帖
查看: 2726|回复: 19
打印 上一主题 下一主题

关于数的性质,希望能给诸位启发

[精华] [复制链接]
楼主
发表于 2003-11-19 23:48:00 | 只看该作者

关于数的性质,希望能给诸位启发

看到太多的关于整除,质数,等等的讨论。希望这道题的解题过程能给诸位以启发

N大于3的正整数,一个集合S{N+1,N+2,n+3。。。N+6}中质数个数最大是几?

positive integer n>3; S=[n+1, ..., n+6]

there are must be 3 even and 3 odd numbers in 6 consecutive numbers.
say n is an even number (or odd, does not matter)
so the odd # in S are n+1, n+3, n+5
then let us talk about if there is any prime # among those three,
let us say remainderof n has 3 possibilities if divided by 3 (0, 1, or 2)
if n =3a, (remainder=0), n+3 = 3a+3, not prime #
if n=3a+1, n+5=3a+6, not prime #
if n=3a+2, n+1 = 3a+3, not prime #

so at least one of the three could be dividied exactly by 3, so the the greatest prossible number of prime numbers is 2 in S.
沙发
发表于 2003-11-19 23:53:00 | 只看该作者



[此贴子已经被作者于2003-12-25 14:23:46编辑过]
板凳
发表于 2003-11-20 00:09:00 | 只看该作者
谢谢,的却有所起发!
地板
发表于 2003-11-20 10:55:00 | 只看该作者
想起当年初中时分析1000以内的质数想找出规律,呵呵,给我回忆了,断断续续的我思索了一个月,幻想着......

顶,思路对于整数的性质很有启发!:)
5#
发表于 2003-11-20 12:39:00 | 只看该作者
以下是引用rosemsem在2003-11-19 23:48:00的发言:
看到太多的关于整除,质数,等等的讨论。希望这道题的解题过程能给诸位以启发

N大于3的正整数,一个集合S{N+1,N+2,n+3。。。N+6}中质数个数最大是几?

positive integer n>3; S=[n+1, ..., n+6]

there are must be 3 even and 3 odd numbers in 6 consecutive numbers.
say n is an even number (or odd, does not matter)
so the odd # in S are n+1, n+3, n+5
then let us talk about if there is any prime # among those three,
let us say remainderof n has 3 possibilities if divided by 3 (0, 1, or 2)
if n =3a, (remainder=0), n+3 = 3a+3, not prime #
if n=3a+1, n+5=3a+6, not prime #
if n=3a+2, n+1 = 3a+3, not prime #

so at least one of the three could be dividied exactly by 3, so the the greatest prossible number of prime numbers is 2 in S.



Frankly, I admire you very much! fool you
6#
 楼主| 发表于 2003-11-23 10:37:00 | 只看该作者
ha, what logic is that? haha
7#
 楼主| 发表于 2003-11-25 10:32:00 | 只看该作者
pls cross reference former posting of 数论or数的性质,兼答天山真题
8#
发表于 2003-11-25 10:54:00 | 只看该作者
把简单问题复杂化了,实际上质数最密集的就是11以内,(有一道题问类似的意思)这里N取4,从5到10,就2个质数。可解。
9#
发表于 2003-11-25 10:59:00 | 只看该作者
以下是引用oliversunray在2003-11-25 10:54:00的发言:
把简单问题复杂化了,实际上质数最密集的就是11以内,(有一道题问类似的意思)这里N取4,从5到10,就2个质数。可解。

你不要就题论题 我们需要的是思路来应万变!
10#
发表于 2003-11-25 11:30:00 | 只看该作者
提个问题,证明了有一个肯定不是,就能肯定证明另外两个有肯定是的可能性存在吗?只能证明三个肯定是的结论是不对的,你们说呢?

当然就这道题是2个most.


[此贴子已经被作者于2003-11-25 11:31:27编辑过]
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-6-24 22:43
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部