ChaseDream
搜索
返回列表 发新帖
查看: 2003|回复: 7
打印 上一主题 下一主题

请教涛涛GWD-7-15题。

[复制链接]
楼主
发表于 2006-6-10 18:02:00 | 只看该作者

请教涛涛GWD-7-15题。

Which of the following fraction has a decimal equivalent that is a terminating decimal.

A. 10/189

B.15/196

C.16/225

D.25/144

E.39/128


沙发
发表于 2006-6-10 20:08:00 | 只看该作者
e啊,因为2总能除尽一个数
板凳
发表于 2007-5-31 13:49:00 | 只看该作者
题目是什么意思啊
地板
发表于 2007-5-31 13:52:00 | 只看该作者
为什么不是C
5#
发表于 2007-5-31 14:39:00 | 只看该作者
3是225的因子,除不尽
6#
发表于 2007-5-31 20:29:00 | 只看该作者
以下是引用llxx1985cn在2007-5-31 13:49:00的发言:
题目是什么意思啊

题目的意思是:以下的哪个分数是有尽小数,也就是哪个分数可以除得尽

7#
发表于 2007-5-31 20:52:00 | 只看该作者
哪个分数能除尽
8#
发表于 2010-9-20 16:40:21 | 只看该作者
1. Make sure you reduce your fractions first.

2. Then prime factorize the denominators. If you see any prime besides 2 or 5, the decimal is recurring. If you only see 2s and/or 5s, it terminates.

So, in the text I quoted above, while it's true that 224 is divisible by 7, that 7 cancels with the 49 in the numerator- you need to reduce the fraction first.

You can see why step 2. above works- let's use the example answer choice A from the question:

49/224 = 7/32 = 7/2^5. Now multiply numerator and denominator by 5^5 so you have equal powers on 2 and 5 in the denominator:

(7/2^5)*(5^5/5^5) = 7*5^5/(2^5 * 5^5) = (7*5^5)/(10)^5

We have a fraction with a denominator of 100,000, and it's clear when you have a power of 10 in the denominator you get a terminating decimal. There's no need to multiply out the numerator, but if you do you can see exactly what decimal you get:

(7*5^5)/(10)^5 = 21,875/100,000 = 0.21875

Long story short, if your denominator is such that you could make a power of 10, you can get a terminating decimal. That is, the only primes you want to see in the denominator are 2 and/or 5 (***after you've reduced the fraction***). If there's any other prime down there, you have a recurring (infinite) decimal.
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2024-11-30 00:48
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部