ChaseDream
搜索
返回列表 发新帖
查看: 2676|回复: 2
打印 上一主题 下一主题

问一提 PREP的数学题

[复制链接]
跳转到指定楼层
楼主
发表于 2018-1-20 16:11:37 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
Of the three-digit positive integers whose three digits are all different and nonzero, how many are odd integers greater than 700?
A.84
B.91
C.100
D.105
E.243

答案是B
求解题思路,谢谢
收藏收藏 收藏收藏
沙发
发表于 2018-1-20 16:20:04 | 只看该作者
As for the question, you need to find the number of combinations possible such that:

1. It is a 3 digit number > 700 (or between 701-999, inclusive).
2. All digits are different and NON ZERO.
3. The numbers must be ODD --> the last digit can be 1 of 1,3,5,7,9

Based on this, the numbers can be of the following 3 types:

Type 1: 7AB
Type 2: 8EF
Type 3: 9CD

For type 1 and type 3, be very careful that the digits must be different. So if it is 7AB, then B can NOT be 7. Similarly for type 3, 9CD, D can NOT be 9. There is no such restriction when you find numbers of type 2 (8EF).

Number of combinations for type 1 : 1*7*4 = 28

Number of combinations for type 2: 1*7*5 = 35

Number of combinations for type 3 : 1*7*4 = 28

Thus, total numbers possible = 28+35+28 = 91.

B is thus the correct answer.
搬运来的 原楼在这里https://gmatclub.com/forum/of-the-three-digit-positive-integers-whose-three-digits-are-all-different-and-nonzero-how-many-are-odd-integers-greater-than-217298.html
板凳
 楼主| 发表于 2018-1-20 16:32:23 | 只看该作者
yracheld 发表于 2018-1-20 16:20
As for the question, you need to find the number of combinations possible such that:

1. It is a 3 d ...

谢谢!!
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2024-12-25 11:20
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部