- UID
- 581292
- 在线时间
- 小时
- 注册时间
- 2010-11-8
- 最后登录
- 1970-1-1
- 主题
- 帖子
- 性别
- 保密
|
找到一篇关于Jupiter的 :
ugust 22, 1676: Rømer Waits for the Speed of Light
Jupiter’s moon Io with Jupiter in the background, photographed by the Voyager 1 spacecraft on March 2, 1979. The cloud bands of Jupiter provide a sharp contrast to the solid, volcanically active surface of its innermost large satellite.
Photo NASA/JPL/Caltech (NASA photo # PIA00378)
One of Jupiter’s moons, Io, led the Danish astronomer Ole Rømer to the first measurement of the speed of light in 1676. Rømer spent time observing the movement of Io and Jupiter’s other satellites and compiling timetables of their orbital periods (the time it takes for the moons to revolve around Jupiter once). Io’s orbital period was observed to be 1.769 Earth days. The key phenomenon that Rømer observed was that the time elapsed in between eclipses was not constant. Rather, it varied slightly at different times of year. Since he was fairly confident that the orbital period of Io was not actually changing, he deduced that this was an observational effect. The orbital paths of Earth and Jupiter being available to him, he noticed that periods in which Earth and Jupiter were moving away from each other always corresponded to a longer interval in between eclipses. Conversely, the times when Earth and Jupiter were moving closer together were always accompanied by a decrease in the eclipse interval. This, Rømer reasoned, could be satisfactorily explained if light possessed a finite speed, which he went on to calculate.
Rømer was so dedicated in his studies that he continued tracking and timing Io’s orbital period for years, discovering a very interesting phenomenon as a result. Because Rømer was observing Io’s orbit throughout the year, he was recording data as Earth and Jupiter moved farther apart and closer to each other as they themselves orbited the Sun. What he discovered was a 17-minute delay in a usually clockwork eclipse of Io that occurred when Earth and Jupiter were farther away from each other. Rømer knew that Io’s orbital period couldn’t be changing just because of the distance between Earth and Jupiter, so he developed a theory: if only the distance between the planets was changing, the image of Io’s eclipse must be taking those 17 extra minutes to reach our eyes on Earth. This theory of Rømer’s was rooted in another: that light moved at a fixed speed. Rømer was able to use rough calculations of Earth’s diameter and the time delay from Jupiter to come up with a speed of light that was fairly close to the actual adopted value. |
|