- UID
- 1206739
- 在线时间
- 小时
- 注册时间
- 2016-4-27
- 最后登录
- 1970-1-1
- 主题
- 帖子
- 性别
- 保密
|
作为数学渣,深夜投毒。这是一道老题,钱永强书里看到的,数学高手都惜字如金,渣渣只能到处搜索,CD里有很好的讨论,大家可以版内搜索,我在上次的网站上又找到了大神的解法(最坏打算法),百试百灵,见招拆招,所向无敌了····,特搬运至此与大家分享。弄懂一道题不是关键,关键是思路!思路!思路!NN们我就不多说了,渣渣们还是要做帖子里给出链接的那几道类似的题,巩固技能,加深对这种思路的理解和运用。按照惯例,链接回复可见。希望大家可以有所收获~希望我的数学能有所起色(哭),希望妈妈可以再也不用担心我的数学(哭)·····题目:Each of the integers from 0 to 9, inclusive, is written on a separate slip of blank paper and the ten slips are dropped into hat. If the slips are then drawn one at a time without replacement, how many must be drawn to ensure that the numbers on two of the slips drawn will have a sum of 10?
A. 3
B. 4
C. 5
D. 6
E. 7,
Bunuel的解法:You should consider the worst case scenario: if you pick numbers 0, 1, 2, 3, 4, and 5 then no two numbers out of these 6 add up to 10.
Now, the next, 7th number whatever it'll be (6, 7, 8, or 9) will guarantee that two number WILL add up to 10. So, 7 slips must be drawn to ensure that the numbers on two of the slips drawn will have a sum of 10.
原帖子链接如下:
http://gmatclub.com/forum/each-of-the-integers-from-0-to-9-inclusive-is-written-on-a-68961.html
|
|