ChaseDream
搜索
1234下一页
返回列表 发新帖
查看: 12769|回复: 30
打印 上一主题 下一主题

用乘法原理和加法原理解圆形排列_对“[原创]linlin的圆形排列和条形排列总结!”一帖的个人见解

[精华] [复制链接]
跳转到指定楼层
楼主
发表于 2011-5-5 11:11:09 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
原帖:http://forum.chasedream.com/GMAT_Math/thread-3108-1-1.html


序言:

由于乘法原理和加法原理是排列组合的基本原理,PC两个公式只是这两个原理的特殊应用,所以很多题目与其去套PC的公式,还不如直接用这两个原理来的直接简便。


解释一下规律

“先写规律:环形排列与直线排列相比,就相当于少了一个元素。所以可以先求直线排列,再求圆形排列。”

用乘法原理来解释一下这个规律:


比如:原贴中例二,五个人站成一个圈,有几种排列方式?
解:(5个人站位,完成这个事情要五个步骤)
第一步:第一个人站位,1种(因为圆的旋转对称性,第一个人站到哪里都是一样的)
第二步:第二个人站位,4种(由于有了第一个人的存在,就不是旋转对称了)
第三步:第三个人站位,3
第四步:第四个人站位,2
第五步:第五个人站位,1
总共的方法=1X4X3X2X1=P4,4


从上面的过程来看,其实是结果恰好等于P4,4),意思上是有所不同的。


各个例题解题过程

例一、在已有5个钥匙的钥匙环中放入2个钥匙,2个钥匙相邻的概率?
解:1)先求总方法数(即5个钥匙放入2个钥匙的总排列)
第一步,放入第一把钥匙,5
第二步,放入第二把钥匙,6
总方法数=5X6=30
2)再求两个钥匙相邻的方法数
第一步,2个钥匙绑定,2
第二步,2个钥匙放入5把钥匙中,5
方法数:2X5=10
3)概率=10/30=1/3


例二、五个人站成一个圈的那道题:利用规律很容易得p(4,4)
解:这个上面解释规律的时候已经写了


例三、5个点(其中有一红点)排成一个圆圈,5个人ABCDE,其中A必须站在红点上,问有多少种不同的站法
解:第一步:A站红点,1
第二步:第二个人站位,4

第三步:第三个人站位,3

第四步:第四个人站位,2

第五步:第五个人站位,1
总共的方法=1X4X3X2X1=P4,4


例四、6个盘子,一蓝5白,摆成一圈。五种坚果,其中有NR,别的不知。如果NR之一必须放在蓝盘子中,其他盘子各放一个坚果,共有几种摆法。
解:这里要先分类再分步,即先加法再乘法
第一类:N放蓝盘子
第一步:N放蓝盘子,1
第二步到第五步:放其他坚果,5X4X3X2
总共方法数=1X5X4X3X2= P5,4
第一类:R放蓝盘子
第一步:N放蓝盘子,1
第二步到第五步:放其他坚果,5X4X3X2
总共方法数=1X5X4X3X2X1= P5,4
总的方法数=第一类+第二类= P5,4+ P5,4=240




后记

我自己做排列组合和概率问题时,都是按照这个步骤做的。即:1)弄明白完成题设事件的过程;2)分类再分步(求概率的话就先求总方法数和题目特定条件的方法数,然后相除),过程中再合理利用PC的公式。基本上没碰到什么难题,而且感觉干干净净的。
仅仅记某个规律(比如环形排列与直线排列相比,就相当于少了一个元素。所以可以先求直线排列,再求圆形排列),又对这个规律的界定条件理解不够透彻的话,碰到变体的题目容易弄错。


写出来供大家参考探讨。
收藏收藏13 收藏收藏13
31#
发表于 2022-7-21 13:05:27 | 只看该作者
感谢分享!               
30#
发表于 2020-10-10 12:08:36 | 只看该作者
感谢分享!               
29#
发表于 2020-10-9 11:32:43 | 只看该作者
谢谢!
28#
发表于 2019-11-16 12:29:08 发自手机 Web 版 | 只看该作者
向前辈致敬
27#
发表于 2019-8-1 12:32:17 | 只看该作者
来自2019的感谢
26#
发表于 2018-10-16 12:46:16 | 只看该作者
感谢!
25#
发表于 2018-10-14 22:18:35 | 只看该作者
Mark一下!               
24#
发表于 2017-9-1 10:50:20 | 只看该作者
顶楼主!               
23#
发表于 2016-3-31 10:00:48 | 只看该作者
终于懂了...谢谢楼主!!!!!!
您需要登录后才可以回帖 登录 | 立即注册

手机版|ChaseDream|GMT+8, 2025-2-15 16:41
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部