ChaseDream
搜索
返回列表 发新帖
查看: 967|回复: 6
打印 上一主题 下一主题

平方和四次方的比较有什么窍门么 谢谢

[复制链接]
跳转到指定楼层
楼主
发表于 2010-1-27 03:36:47 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
我不会啊 请见图

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
收藏收藏 收藏收藏
7#
 楼主| 发表于 2010-1-27 04:17:46 | 只看该作者
still 4, which are 3,5,7,11.

9,25,49,121 is not prime number.
-- by 会员 liyang229 (2010/1/27 4:11:34)



说的也是

many thanks!

顺便再帮我看看那个x^4+y^4>z^4 和它们的平方的和的比较吧
6#
发表于 2010-1-27 04:11:34 | 只看该作者
still 4, which are 3,5,7,11.

9,25,49,121 is not prime number.
5#
 楼主| 发表于 2010-1-27 04:08:57 | 只看该作者
for statement 2

it also could be k =3^2*5^2*7^2*11^2
then it becomes a square of some number.
-- by 会员 liyang229 (2010/1/27 4:00:07)



如果那样的话 岂不是有8个质数了 题目说正好4个啊?
地板
发表于 2010-1-27 04:00:07 | 只看该作者
for statement 2

it also could be k =3^2*5^2*7^2*11^2
then it becomes a square of some number.
板凳
 楼主| 发表于 2010-1-27 03:51:19 | 只看该作者
for statement 2, we could know see k =3*5*7*11 or whatever multiple for 4 prime number.
so, it cannot be a square of number.
====
那不就正好解释了K不是整数的平方了么
沙发
发表于 2010-1-27 03:45:49 | 只看该作者
answer is E.
for statement 1, if k is equal to 8. it is not a square of integer.
if K= 4, it is . so, statement 1 is not sufficient enough.

for statement 2, we could know see k =3*5*7*11 or whatever multiple for 4 prime number.
so, it cannot be a square of number.

so statement 2 is also wrong.

answer is E
您需要登录后才可以回帖 登录 | 立即注册

手机版|ChaseDream|GMT+8, 2025-12-2 04:05
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部