ChaseDream
搜索
返回列表 发新帖
查看: 1089|回复: 4
打印 上一主题 下一主题

请教一道数学题-排列组合

[复制链接]
跳转到指定楼层
楼主
发表于 2019-5-16 10:42:50 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
Set AA consists of kk distinct numbers. If nn numbers are selected from the set one-by-one, where n≤kn≤k, what is the probability that numbers will be selected in ascending order?


(1) Set AA consists of 12 even consecutive integers.

(2)  n=5

OA=B

实在不明白为什么是B以下是official explanation
We should understand the following two things:

1. The probability of selecting any nn numbers from the set is the same. Why should any subset of nn numbers have higher or lower probability of being selected than some other subset of nn numbers? Probability doesn't favor any particular subset.

2. Now, consider that the subset selected is {x1, x2, ..., xn}{x1, x2, ..., xn}, where x1<x2<...<xnx1<x2<...<xn. We can select this subset of numbers in n!n! # of ways and out of these n!n! ways only one, namely {x1, x2, ..., xn}{x1, x2, ..., xn} will be in ascending order. So 1 out of n!. P=1n!P=1n!.

Hence, according to the above, the only thing we need to know to answer the question is the size of the subset (nn) we are selecting from set AA.


Answer: B
收藏收藏 收藏收藏
沙发
发表于 2019-5-16 10:51:59 | 只看该作者
这是哪的题啊
板凳
发表于 2019-5-17 00:47:34 | 只看该作者
这题好难啊……个人觉得考试的时候不会出这么难的题qwq
看完了official explanation, 通俗的解释一下思路:由于题干中说集合A中的元素都是distinct numbers,因此,任意从集合A中抽出n个元素,这n个元素有且只有1种升序排列,而从集合A中抽取到这特定的n个元素的方法有n!种,因此抽到升序的概率就是1/n!,跟A中元素的个数无关。
或者这样解释:从k个元素中抽取n个元素,共有C(n,k)种方法,每种抽法对应1种升序排列,即共有C(n,k)种可能的升序排列;而考虑顺序,从k个元素中抽取n个元素,共有A(n,k)种抽法,因此,升序的概率就是C(n,k) / A(n,k),即1/n!
地板
 楼主| 发表于 2019-5-17 01:51:28 | 只看该作者

gmatclub...
5#
 楼主| 发表于 2019-5-17 01:53:10 | 只看该作者
一颗野生的蛋蛋 发表于 2019-5-17 00:47
这题好难啊……个人觉得考试的时候不会出这么难的题qwq
看完了official explanation, 通俗的解释一下思路: ...

懂了!
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2024-11-21 01:39
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部