ChaseDream
搜索
12下一页
返回列表 发新帖
查看: 1127|回复: 10
打印 上一主题 下一主题

请教一道余数题

[复制链接]
跳转到指定楼层
楼主
发表于 2010-8-16 22:51:39 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
这道题不知道怎么做,请牛牛讲解一下思路。
谢谢!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
收藏收藏 收藏收藏
沙发
 楼主| 发表于 2010-8-17 20:08:43 | 只看该作者
没有人知道做么....顶一下
板凳
发表于 2010-8-17 20:13:18 | 只看该作者
C吧。。。余数应该是29
地板
 楼主| 发表于 2010-8-22 20:26:09 | 只看该作者
好像不对呃......
5#
发表于 2010-8-22 21:20:50 | 只看该作者
remainder is 5?    29/8=3....5
6#
发表于 2010-8-22 21:25:30 | 只看该作者
http://laiba.tianya.cn/laiba/CommMsgs?cmm=6160&tid=2656613814187023494
--------------------------------------------------------------------------------------------------------
(1)considering 17 = 1X12 + 5 divided by 8 the remainder is 1, 29 = 2X12 + 5 divided by 8 the remainder is 5; so the remainder is not determined. NOT sufficient.
(2)ditto. considering 29 = 1X18 + 11 and 47 = 2X18 + 11. NOT sufficient.
Taken together,  and then x = 12m + 5 = 18n + 11; this equation can be satisfied if and only if m = 2, n = 1. Because, consider the geometrical graphs of the two equations, two different lines can intersect in one point at most. so x is determined as 29, and the remainder also be determined.
7#
发表于 2010-8-22 22:21:16 | 只看该作者
http://laiba.tianya.cn/laiba/CommMsgs?cmm=6160&tid=2656613814187023494
--------------------------------------------------------------------------------------------------------
(1)considering 17 = 1X12 + 5 divided by 8 the remainder is 1, 29 = 2X12 + 5 divided by 8 the remainder is 5; so the remainder is not determined. NOT sufficient.
(2)ditto. considering 29 = 1X18 + 11 and 47 = 2X18 + 11. NOT sufficient.
Taken together,  and then x = 12m + 5 = 18n + 11; this equation can be satisfied if and only if m = 2, n = 1. Because, consider the geometrical graphs of the two equations, two different lines can intersect in one point at most. so x is determined as 29, and the remainder also be determined.
-- by 会员 onetimewolf (2010/8/22 21:25:30)




65也可以满足1和2,除8余1,所以接着你的分析,应该是选E?
8#
发表于 2010-8-22 22:55:30 | 只看该作者
同意楼上的,通过这两个条件得出的数,被8除不能够得到唯一的余数,因此选E
9#
 楼主| 发表于 2010-8-23 21:18:05 | 只看该作者
http://laiba.tianya.cn/laiba/CommMsgs?cmm=6160&tid=2656613814187023494
--------------------------------------------------------------------------------------------------------
(1)considering 17 = 1X12 + 5 divided by 8 the remainder is 1, 29 = 2X12 + 5 divided by 8 the remainder is 5; so the remainder is not determined. NOT sufficient.
(2)ditto. considering 29 = 1X18 + 11 and 47 = 2X18 + 11. NOT sufficient.
Taken together,  and then x = 12m + 5 = 18n + 11; this equation can be satisfied if and only if m = 2, n = 1. Because, consider the geometrical graphs of the two equations, two different lines can intersect in one point at most. so x is determined as 29, and the remainder also be determined.
-- by 会员 onetimewolf (2010/8/22 21:25:30)





65也可以满足1和2,除8余1,所以接着你的分析,应该是选E?
-- by 会员 vivian3209 (2010/8/22 22:21:16)



确实29、65都满足(1)和(2),答案是E

可是我看上面那位的分析也没错啊,x = 12m + 5 = 18n + 11确实是2条直线,应该只有1个交点,但为啥能得出2个X?
10#
 楼主| 发表于 2010-8-23 23:30:18 | 只看该作者
http://laiba.tianya.cn/laiba/CommMsgs?cmm=6160&tid=2656613814187023494
--------------------------------------------------------------------------------------------------------
(1)considering 17 = 1X12 + 5 divided by 8 the remainder is 1, 29 = 2X12 + 5 divided by 8 the remainder is 5; so the remainder is not determined. NOT sufficient.
(2)ditto. considering 29 = 1X18 + 11 and 47 = 2X18 + 11. NOT sufficient.
Taken together,  and then x = 12m + 5 = 18n + 11; this equation can be satisfied if and only if m = 2, n = 1. Because, consider the geometrical graphs of the two equations, two different lines can intersect in one point at most. so x is determined as 29, and the remainder also be determined.
-- by 会员 onetimewolf (2010/8/22 21:25:30)






65也可以满足1和2,除8余1,所以接着你的分析,应该是选E?
-- by 会员 vivian3209 (2010/8/22 22:21:16)




确实29、65都满足(1)和(2),答案是E

可是我看上面那位的分析也没错啊,x = 12m + 5 = 18n + 11确实是2条直线,应该只有1个交点,但为啥能得出2个X?
-- by 会员 linshigong (2010/8/23 21:18:05)


想通了上面这个,其实交不交点没有意义了。

但这道题除了把29、65代进去算以外,有没有别的方法或者思路呢?
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-9-7 22:59
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部