这道题目是不是不用计算的呢?直接画图
x上的intercepts的乘积为正,又因为知道两直线相交于第一象限(4,3),那么有两种可能,两直线同时经过1,2,3象限,或者同时经过1,3,4象限。这样的话斜率可以为正也可以为负,无法确定。
y上的乘积为负,那就说明一条经过一二四象限,一条经过一三四象限。
这样的话就能判断是negative了。
不知道对不对哎?我数学很差,请nn批评
第二个条件画图,可经过1,2,3显现和1,3,4 相较于第一象限且结点于y product为negative 但是斜率product却负负得正positive
希望你批评
您需要 登录 才可以下载或查看,没有帐号?立即注册
举报
首先,可以确定1,2各自并不成立,这是很简单的,不推导了。
现在问题难点在于证明两个条件一起,是否能验证题目。
从简便出发的话,我们先分析与y轴截距的问题。m,l相乘为负,则说明与y轴相交一个为正一个为负。
不失一般性,
假设m斜线与y轴相交为正
则,m斜线斜率有正有负两种情况,负斜率与x轴相交于正半轴,正斜率与x轴相交于x的负半轴。
l斜线与y轴相交于负半轴,画图可知,l与x一定相较于正半轴。
而根据条件一,可得m l与x轴相交的乘积为正,则说明m与x相交于正半轴,m为负斜率。
所以他们俩的斜率之积为负数
以上,截距是讲两点之间距离的吧,应该没正负(如果我没记错的话),这里随便拿来称呼下,理解万岁
以上,所有过程都是画图解决。比计算容易些,也不容易出错。
发表回复
手机版|ChaseDream|GMT+8, 2025-9-24 14:32 京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号
ChaseDream 论坛
© 2003-2025 ChaseDream.com. All Rights Reserved.