ChaseDream
搜索
返回列表 发新帖
查看: 2338|回复: 3
打印 上一主题 下一主题

求助:几道新下载GMAT prep数学题

[复制链接]
楼主
发表于 2007-5-4 08:33:00 | 只看该作者

求助:几道新下载GMAT prep数学题

#11. If n and y are positive integers, and 450y=n3 , which of the following must be an integer?

I. y/(3x22x5)

II. y/(32x2x5)

III. y/(3x2x52)

A) None B) I only C)II only D) III only E) I, II and III

答案是 B.  不懂。

#16. for how many integers n is 2n = n2 ?

答案是 "2".   "for how many integer" 是不是指有几个?可为什么有两个?

#20 Data Sufficiency: if x and y are integers greater than 1, is X multiple of Y?

1) 3y2 + 7y = x

2) x2 - x is a multiple of y

答案是 A.   我实在想不通

#33 Data sufficiency: how many odd integers  are greater than integer x and less than integer y?

1) There are 12 even integers greater than x  and less than y

2) there are 24 integers greater than x  and less than y

答案是 B. 为什么1)不行?

沙发
发表于 2007-5-4 10:51:00 | 只看该作者

#11. If n and y are positive integers, and 450y=n3 , which of the following must be an integer?

I. y/(3x22x5)

II. y/(32x2x5)

III. y/(3x2x52)

A) None B) I only C)II only D) III only E) I, II and III

答案是 B.  不懂。 把450分解了=2*3^2*5^2  那么要保证450y是n^3  Y 至少是 2^2*3*5  所以1 正确 其他都不对

#16. for how many integers n is 2n = n2 ?

答案是 "2".   "for how many integer" 是不是指有几个?可为什么有两个?画图 一个是抛物线 一条是递增曲线 有两个交点, 所以是2 我做这题时就这么想的

#20 Data Sufficiency: if x and y are integers greater than 1, is X multiple of Y?

1) 3y2 + 7y = x

2) x2 - x is a multiple of y

答案是 A.   我实在想不通 1) y(3y+7)/y= 3y+7 y是 非零整数 正确 2) 举个反例 x=4 y=6 4不是6的倍数

#33 Data sufficiency: how many odd integers  are greater than integer x and less than integer y?

1) There are 12 even integers greater than x  and less than y

2) there are 24 integers greater than x  and less than y

答案是 B. 为什么1)不行?1不行啊 因为题目没有告诉 x 和y 是 偶数还是奇数 如果两个都是偶数 那么他们之间的奇数是13个 如果x y都是奇数就只有11个 还有 1奇 1偶的情况。。。。

板凳
发表于 2007-5-4 10:53:00 | 只看该作者

回复:(zoro513)求助:几道新下载GMAT prep数学题

11. 450y = 3^2*5^2*2*y = n^3.

      let y/(3*2^2*5) = k therefore y = 3*2^2*5*k

      subs into y and n relationship, 3^3*5^3*2^3*k = n^3

      (3*5*2*a)^3 = n^3 therefore n = 3*5*2*a = integer

      Since 2,3 and 5 are integers, therefore a must be integer hence k must be integer since k = a^3.

16. "for how many integers" means how many integers fulfill this relationship of 2^n = n^2

       the answer is 2 integers i.e 2 and 4 because when n > 5, 2^n will definitely greater than n^2.

20. X = kY

     (1)y(3y+1) = x = ky, thus (1) alone is sufficient.

     (2)x(x-1) = ky, it can be x or (x-1) is multiple of y thus (2) is insufficient.

33. (1) is insufficient because integer x can be odd or even and integer y can be odd or even as well. Multiple 

      possibilities.

      (2) indicates 24 integers between x and y thus x is same as y => odd or even i.e 12 odd integers.

地板
 楼主| 发表于 2007-5-4 13:51:00 | 只看该作者

太谢谢了。 

您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-7-19 09:26
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部