1. Which of the following inequlities has a solusion set that when graphed on the number line, is a single segment of finite length? a. x^4>=1 b. x^3<=27 c. x^2>=16 d. 2<=I1I<=5 e. 2<=3x+4<=6 ANS: E 我觉得BCDE都可以呀, 都是有限的.
a. x^4>=1 →(x^4-1)>=0→(x^2-1)(x^2+1)>=0→(x+1)(x-1) (x^2+1)>=0
→因为(x^2+1)>0,所以(x+1)(x-1)>=0→x<-1,x>1
b. x^3<=27→(x^3-3^3)<=0→(x-3)(X^2+3x+3^2)<=0→用判别式d=b^2-4ac→得知(X^2+3x+3^2)没有实根,但(X^2+3x+3^2)=[(x+3/2)^2+27/4]>0→所以(x-3)<=0→x<=3
c. x^2>=16→[x^2-4^2]>=0→(x-4)(x+4)>=0→x>4,x<-4
d. 2<=I1I<=5--- 2<=I1I,2小于觉对值1,是否抄错? |