- UID
- 340682
- 在线时间
- 小时
- 注册时间
- 2008-5-9
- 最后登录
- 1970-1-1
- 主题
- 帖子
- 性别
- 保密
|
排列组合数学达人们,Manhattan里有道题我觉得答案给错了。
原题:
In the town of Z, the town lion roars on some days and not on others. If a day is chosen at random from last March, what's the probability that on that day, either the town lion roared or it rained?
1)Last March, the lion never roared on a rainy day.
2) Last March, the lion roared on 10 fewer days than it rained.
答案是no sufficient data to answer the question.但是我算出来是21/31。
理由:
1. The days of lion roaring should be any integer between 1 and 10(inclusive) since it's told that "lion roars on some days" indicating the minimum is 1, and rainy day # is 10 higher with max of total being 31. 也就是说每天只能有三种状态(lion roaring, rainy or neither), 且lion roaring和rainy为互斥,加上rainy要多10天以及总数31的限制,一共只有10总状态分布,例如:2,12,17。所以每种分布下的概率为1/10*相应的事件概率,比如:1/10*((2+12)/31),而(2+12)这个部分是从(1+11)开始的十个数字的2差等差数列,所以答案就应该是十个状态分布下各自独立概率的和。难道不是吗?以及,弱弱问下,每年三月都是有31天的对吧?
我觉得要弄死处女座的人,这道题够了!
|
|