- UID
- 831410
- 在线时间
- 小时
- 注册时间
- 2012-11-19
- 最后登录
- 1970-1-1
- 主题
- 帖子
- 性别
- 保密
|
求教og 13 problem solving 196 题 From the consecutive integers -10 to 10, inclusive, 20 integers are randomly chosen with repitions allowed.What is the least possible value of the product of the 20 integers?
A (-10)^20
B (-10)^10
C 0
D -(10)^19
E -(10)^20
Answer:
If -10 is chosen an odd number of times and 10 is chosen the remaining number of times (for example, choose -10 once and choose 10 nineteen times, or choose -10 three times and choose 10 seventeen times), then the product of the 20 chosen numbers will be
-(10)^20.Note that -(10)^20 is less than -(10)^19,the only other negative value among the answer choices.
the correct answer is E |
先谢谢回答的人啦
这道题的计算我明白,但我把“the least possible value”理解成“最不可能出现的值”也就是概率最小的值了
想问下大家题中的表达是否存在这种歧义?如果题目要问“最不possible的值”会用怎样的问法呢?
再次感谢!
|
|