ChaseDream
搜索
返回列表 发新帖
查看: 3630|回复: 4
打印 上一主题 下一主题

og 13 ds 80, 133 (两道新题答案解析讨lun)

[复制链接]
跳转到指定楼层
楼主
发表于 2012-7-12 11:59:11 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
DS 80: If R ans S are positive integers, can the fraction r/s be expressed as a decimal with only a finite number of nonzero digits
(1)s is a factor of 100;  (2) r is a factor of 100. Answer:  A
对选项1的解释如下:it is given that s is a factor of 100 and so s = 1, 2, 4, 5, 10, 20,25, 50, 100. this means that r/s musbt be one of the quotients r/1, r/2,r/4,...r/100. Thus , r/s must be one of th products r(1), r(0.5), r(o.25), r (0.2), or r (0.01). 以上都不难理解,注意,问题来了: -in each case, r/s is the product of an integer and a decimal with a finite number of nonzero digits, and hence, r/s can be expressed as a decimal with a finite number of nonzero digits, In fact, it suffices to not this is true for r/100, since eatch of other possibilities is a positive integer times r/100.
楼主疏于学习数学数年,现在搞不清对有限小数的定义是否也包括整数。 因为当s=1, r/s 是整数integer啊,而非 "a decemal with only a finite number of nonzero digits".
求解!!
DS 133: If x, y, z are three digit positive intgers and if x=y+z, is the hundreds digit of x equal to the sum of th hundreds digits of y and z?
(1) the tens digits of x is equal to the sum of the tens digits of y and z; (2) the units digit of x is equal to the sum of the units digits of y and z. Anwer : A
答案解析完全看不懂, 有没有高手能给出更简介明了和严谨的思路?

谢谢!!!
收藏收藏 收藏收藏
沙发
发表于 2012-11-3 20:37:01 | 只看该作者
我也再问80题。。。。我连题都没大读懂,问的是:分数r/s可以被表示成为一个仅有有限个数字组成的非零数字的小数吗?求解啊 。。。。。
板凳
发表于 2013-2-4 07:06:10
lostkiki, 看这里:http://www.kaogmat.com/wiki/Expl ... b01d04b93b420010100

总结下, 整数就是 n.0000000, 是有限的nonzero digits + zeros, can be expressed as decimal with only a finite number of nonzero digits.

地板
发表于 2013-2-4 07:06:47 | 只看该作者
回帖怎么还要评审??
5#
发表于 2013-2-4 07:08:22 | 只看该作者
嗯,看来是因为有外部链接。链接里面的内容就是 整数 是 n.0000000000... can be expressed as decimal with a finite number of nonzero digits
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-9-10 08:48
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部