List T consist of 30 positive decimals, none of which is an integer, and the sum of the 30 decimals is S. The estimated sum of the 30 decimals, E, is defined as follows. Each decimal in T whose tenths digit is even is rounded up to the nearest integer, and each decimal in T whose tenths digits is odd is rounded down to the nearest integer. If 1/3 of the decimals in T have a tenths digit that is even, which of the following is a possible value of E - S ? I. -16 II. 6 III. 10 A. I only B. I and II only C. I and III only D. II and III only E. I, II, and III 答案是B. -- by 会员 redredfox (2012/7/4 23:38:22)
这道题有点复杂,就是向上取整还是向下取整的问题。
题目复述一下,集合T有30个正十进制数,且每个都不为整数。30个数和为S。 E是一个近似和,是按照以下规则对T内的数取整,并对取整结果求和:小数点后第一位(十分位)如果是偶数,那就向上取整(比它大的最小整数,比如5.23取整为6);如果是奇数,就向下取整(比它小的最大整数,比如5.33取整为5)。 已知有1/3的数小数点后第一位是偶数,问E-S可能的值。
思路:E-S就是求近似和的误差。 设集合中元素是{a1,...a30},S=a1+...+a30. 设b1...b30是a1...a30按照规则取整后的结果,则E=b1+...+b30. E-S=(b1-a1)+...+(b30-a30)
记[a1]为比a1小的最大整数,方便起见再设c1=[a1]-a1,这里因为所有数字都不是整数,故-1<c1<0 则如果a1小数点后一位是偶数,那么b1=[a1]+1,b1-a1=1+[a1]-a1=1+c1 如果是奇数,那么b1=[a1], b1-a1=[a1]-a1=c1
已知有1/3,即10个数小数点后是偶数,不失一般性设为a1...a10, 故有E-S=(1+c1)+(1+c2)+...+(1+c10)+c11+c12+...+c30=10+(c1+...+c30) 前面已经说过 -1<c1<0 所以当c1取0时,E-S最大,E-S<10+0*30=10 c1取-1时,E-S最小,E-S>10+30*-1=-20 (只是为了叙述方便,c1取不到0和-1,两边都是开区间)
所以-20<E-S<10, 选项I,II正确 |