ChaseDream
搜索
返回列表 发新帖
查看: 774|回复: 7
打印 上一主题 下一主题

求各位大神一道数学题~

[复制链接]
跳转到指定楼层
楼主
发表于 2012-2-19 21:44:02 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
For every positive even integer n, the function h(n) is defined to be the product of all the even integers from 2 to n, inclusive.  If p is the smallest prime factor of h(100) + 1, then p is


(A) between 2 and 10
(B) between 10 and 20
(C) between 20 and 30
(D) between 30 and 40
(E) greater than 40
收藏收藏 收藏收藏
沙发
 楼主| 发表于 2012-2-19 21:44:21 | 只看该作者
自己顶顶~
板凳
 楼主| 发表于 2012-2-19 22:07:53 | 只看该作者
补充下,答案是E
地板
发表于 2012-2-29 22:47:41 | 只看该作者
同求!!
5#
发表于 2012-2-29 23:08:27 | 只看该作者
h(100)=2*4*6*...*100,
两个相邻的数不会有共同的质因数,
h(100)的最大质因数为47,并且包含了所有小于47的质数。
而h(100)+1使得原来的这些质因数都不能整除,所以要找质因数要一定要大于47.
6#
发表于 2012-2-29 23:22:56 | 只看该作者
h(100)的最大质因数为47,并且包含了所有小于47的质数
为啥呀
7#
发表于 2012-2-29 23:32:37 | 只看该作者
h(100)的最大质因数为47,并且包含了所有小于47的质数
为啥呀
-- by 会员 yoman (2012/2/29 23:22:56)



因为h(100)=2*4*...*100,其中包括了所以小于50的数的倍数,所以每个小于50的数都是h(100)的因数,
47是小于50的最大的质数
所以,h(100)的最大质因数是47
我觉得是这样
8#
发表于 2012-2-29 23:38:43 | 只看该作者
this is definitely a difficult number properties question. Let's first consider the prime factors of h(100). According to the given function,
h(100) = 2*4*6*8*...*100

By factoring a 2 from each term of our function, h(100) can be rewritten as
2^50*(1*2*3*...*50).

Thus, all integers up to 50 - including all prime numbers up to 50 - are factors of h(100).

Therefore, h(100) + 1 cannot have any prime factors 50 or below, since dividing this value by any of these prime numbers will yield a remainder of 1.

Since the smallest prime number that can be a factor of h(100) + 1 has to be greater than 50, The correct answer is E.

Hope that helps
-Dan
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-8-18 05:38
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部