ChaseDream
搜索
返回列表 发新帖
查看: 2641|回复: 1
打印 上一主题 下一主题

[资料分享] 每日新GRE之阅读能力锻炼素材一

[复制链接]
跳转到指定楼层
楼主
发表于 2011-12-12 23:58:34 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
你孤独么?你寂寞么?你忧伤失落么?~来锻炼新GRE阅读吧~这是个长期的工程,这是历史赋予的使命,这是需要智慧和勇气的一片天地。在接下去的日子里,KnightBM会尽力去搜集各类适合新GRE阅读的素材,并分享到CD的新GRE板块,希望能给用于坚持锻炼阅读能力的孩子们尽自己微薄之力。无论是词汇,句法理解还是阅读方法的锻炼,都是需要时间和素材去打磨的,成为阅读高手其实很简单,秘诀就是“坚持”这两个字,其实这两个字也同样适用于爱情,事业,甚至人生。希望大家能坚持阅读,坚持爱情,坚持事业,坚持...人生~!


这里是由KnightBM给您能带来的精选新GRE阅读能力提升素材分享贴一(理科长文章 ,LZY shared this from scientificamerican.com)
Motion Sickness Treatments Make Waves

James Locke, a flight surgeon at NASA's Johnson Space Center in Houston, has made dozens of people sick in the name of science. When he puts subjects in a spinning chair designed to induce motion sickness, roughly 70 percent of them succumb—and at nearly the exact same point on each ride. Locke has used this research and his work with shuttle astronauts to determine which medications and doses best prevent the nausea and vomiting associated with motion sickness.

Unfortunately, while the chair always goes through precisely the same motions, the real world is less predictable. In a ship at sea or on a small plane in turbulence, for example, the type and amount of motion can vary dramatically—and so can its effects on people.

Researchers like Locke, and those who work with pilots and the military's most frequent flyers, are especially keen to find better ways to treat motion sickness. And the many civilians who face nausea in cars, planes, boats or even the tamest amusement park rides would welcome a cure without the common side effects of current medications, such as sleepiness, or the questionable efficacy of alternative treatments, such as pressure bracelets. The path to those ends remains bumpy and filled with more than a few green faces, but new research is closer to finding the best treatments to keep both side effects and lunch down.

Eyes vs. ears
Despite decades of research, scientists are still not sure exactly why motion sickness occurs—or how. The currently accepted theory is that sensory conflict is to blame.
   
"Information from both our visual and vestibular systems is processed by the brain to match it all up. Your vestibular system—your inner ear—is tuned to a terrestrial, 1G environment," Locke says. "When you move [yourself] around, changes in your vestibular system match up with what you're seeing. But [riding] in an airplane or car, your inner ear signals that you're moving, but your eye says you're sitting still" because your body is not moving in relation to its immediate environment—such as the seat you're sitting in, the back of the seat in front of you and the floor beneath your feet.

Why this conflicting input actually causes symptoms such as vomiting is also fairly unclear, says Edwin Park, a neurologist at the Naval Aerospace Medical Institute in Pensacola, Fla.. "Most research has only revealed bits and pieces, and it's all speculation on how it goes together."

A number of neural pathways apparently can activate the brain's vomiting center, thought to be located in the medulla. Studies have shown that certain medications—antihistamines, anticholinergics, amphetamines and serotonin agents—are effective in treating motion sickness, which suggests that it involves the related neurotransmitters: histamine, acetylcholine, noradrenalin and serotonin. Locke says some agents used to treat nausea from other causes, such as food poisoning and chemotherapy, curiously fail to work on motion sickness. Thus, these reactions likely do not involve the same brain pathways as motion-induced nausea.

Locke's data suggest that roughly 30 percent of the population is naturally immune to motion sickness, at least in most conditions. Studies as to why some people are susceptible and others are not have been inconclusive, he says: "So far, we're unable to predict who gets it and who doesn't." Most research has focused, instead, on what helps those who do succumb in controlled conditions, which may also help scientists better manage the condition in the real world.
   
Drugs and other treatments
Unimpressed with the effectiveness of over-the-counter meds, NASA researchers have experimented with combinations of more heavy-hitting drugs to strengthen astronauts' stomachs, so to speak. Through trial and error, Locke has found that a combination of oral scopolamine, to suppress vomiting, and dextroamphetamine, to counteract scopolamine's potential to induce drowsiness, reduced the incidence of motion sickness from 70 percent to about 12 percent among passengers in the "Vomit Comet"—a DC-9 aircraft used to achieve brief periods of zero gravity as part of NASA's Reduced Gravity Program. Oral or injected scopolamine takes effect more quickly and can be administered in higher doses than the patches commonly used by the general public, but the drug is not as readily available to the public in those forms (NASA orders its own supply).

Multiple studies have shown that people with a history of suffering from migraines are more susceptible to motion sickness. Joseph Furman, a professor in the department of otolaryngology at University of Pittsburgh, recently published a study showing that patients who were prone to migraines that are accompanied by dizziness responded to rizatriptan, a serotonin agonist that is often prescribed to help stop migraine headaches in their early stages. But like motion sickness, scientists do not really know why people get migraines, Furman says. And determining whether the drug would have the same vertigo-alleviating effect on people who do not would require a larger study of rizatriptan's application specifically to motion sickness.    

Additional factors might complicate the full biophysiology of motion sickness, some experts argue. "To say a certain percentage of the population is susceptible to motion sickness is probably an oversimplification," Park says. "There are so many variables involved, including the type and frequency of motion, and a range of tolerance and frequency." In fact, testing motion sickness in the real world is so difficult precisely because conditions and individuals vary so much on a case-by-case and incident-by-incident basis.

Park thinks anxiety makes people more susceptible, for instance, and having a sense of control over a situation makes them less so—which might explain why people are more likely to get sick riding in a car or aircraft than when they are driving or at the controls. He has used desensitization training, exposure to motion in an artificial environment (the same type of spinning chair Locke uses), and biofeedback, in which subjects learn to control their own breathing, heart rate and other physical responses, to help flyers deal with motion sickness.

收藏收藏 收藏收藏
沙发
发表于 2011-12-13 00:00:49 | 只看该作者
哈哈~~ 想法很好啊
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-2-27 15:36
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部