ChaseDream
搜索
12下一页
返回列表 发新帖
查看: 1201|回复: 14
打印 上一主题 下一主题

小女数学不好,求高人解答数学题!

[复制链接]
跳转到指定楼层
楼主
发表于 2011-8-15 19:17:10 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
If a and b are positiveintegers such that ab and a/b are both evenintegers, which of the following must be an odd integer?
A a/2
B  b/2
C   (a+b)/2
D    (a+2)/2
E  (b+2)/2
求解答过程?如果遇到类似的题怎么思考?
收藏收藏 收藏收藏
沙发
发表于 2011-8-15 19:51:09 | 只看该作者
My understanding,
(1)a-b = even => a=even and b=even; or a=odd and b=odd
(2)a/b = even

(1)+(2)=> a=even, b=even  What's more, a/b = even => a must be multiple of 4.
So (a+2)/2 = a/2 +1, a/2 must be even; so a/2+1 must be odd.

Key: D
板凳
发表于 2011-8-15 19:58:00 | 只看该作者
My understanding,
(1)a-b = even => a=even and b=even; or a=odd and b=odd
(2)a/b = even

(1)+(2)=> a=even, b=even  What's more, a/b = even => a must be multiple of 4.
So (a+2)/2 = a/2 +1, a/2 must be even; so a/2+1 must be odd.

Key: D
-- by 会员 jeffxu (2011/8/15 19:51:09)

Why a must be multiple of 4?
地板
发表于 2011-8-15 20:09:38 | 只看该作者
My understanding,
(1)a-b = even => a=even and b=even; or a=odd and b=odd
(2)a/b = even

(1)+(2)=> a=even, b=even  What's more, a/b = even => a must be multiple of 4.
So (a+2)/2 = a/2 +1, a/2 must be even; so a/2+1 must be odd.

Key: D
-- by 会员 jeffxu (2011/8/15 19:51:09)


Why a must be multiple of 4?
-- by 会员 ctuwuzida (2011/8/15 19:58:00)



Do you agree that both a and b are even?
If so, because a/b is even =>a/b=2k (k is an integer) => a = 2k*b,  since b is even,say b=2n => a = 4kn
5#
发表于 2011-8-15 20:34:53 | 只看该作者
My understanding,
(1)a-b = even => a=even and b=even; or a=odd and b=odd
(2)a/b = even

(1)+(2)=> a=even, b=even  What's more, a/b = even => a must be multiple of 4.
So (a+2)/2 = a/2 +1, a/2 must be even; so a/2+1 must be odd.

Key: D
-- by 会员 jeffxu (2011/8/15 19:51:09)



Why a must be multiple of 4?
-- by 会员 ctuwuzida (2011/8/15 19:58:00)




Do you agree that both a and b are even?
If so, because a/b is even =>a/b=2k (k is an integer) => a = 2k*b,  since b is even,say b=2n => a = 4kn
-- by 会员 jeffxu (2011/8/15 20:09:38)


yeah, got it.thanks! it`s very tricky
6#
 楼主| 发表于 2011-8-16 23:07:09 | 只看该作者
My understanding,
(1)a-b = even => a=even and b=even; or a=odd and b=odd
(2)a/b = even

(1)+(2)=> a=even, b=even  What's more, a/b = even => a must be multiple of 4.
So (a+2)/2 = a/2 +1, a/2 must be even; so a/2+1 must be odd.

Key: D
-- by 会员 jeffxu (2011/8/15 19:51:09)

Thanks!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7#
发表于 2011-8-17 05:07:35 | 只看该作者
a-b is even integer ->a-b=2m,m=1,2,3...
a/b is even integer->a/b=2n->a=2nb, n=1,2,3...
plug a=2nb into a-b=2k we get b(2n-1)=2m->b must be even integer denotes b=2k,k=1,2,3...
plug b=2k into a=2nb ->a=4kn, k,n=1,2,3...
(1) a/2=2kn, must be even integer
(2) b/2=k, k=1,2,3... can be odd or even integer
(3) (a+b)/2=(4kn+2k)/2=k(2n+1), k,n=1,2,3... can be odd or even integer
(4) (a+2)/2=(4kn+2)/2=2kn+1, k,n=1,2,3... must be odd integer
(5) (b+2)/2=(2k+2)/2=k+1, k=1,2,3... can be odd or even integer

therefore, the answer is D.
8#
发表于 2011-8-17 05:30:31 | 只看该作者
遇到奇偶的问题,一律写成2n 或者2n+1 轻松解决问题
9#
 楼主| 发表于 2011-8-17 13:12:13 | 只看该作者
遇到奇偶的问题,一律写成2n 或者2n+1 轻松解决问题
-- by 会员 wyw1018 (2011/8/17 5:30:31)

非常到位!
10#
 楼主| 发表于 2011-8-17 13:16:36 | 只看该作者
My understanding,
(1)a-b = even => a=even and b=even; or a=odd and b=odd
(2)a/b = even

(1)+(2)=> a=even, b=even  What's more, a/b = even => a must be multiple of 4.
So (a+2)/2 = a/2 +1, a/2 must be even; so a/2+1 must be odd.

Key: D
-- by 会员 jeffxu (2011/8/15 19:51:09)

另外还想请教一道数学题:Q21:
If x and y are positive integers, what isthe value of (x+y)2?
(1)   x = y - 3
(2) x and y areprime numbers.
                 
A. Statement (1) ALONE is sufficient,but statement (2) alone is not sufficient.
B. Statement (2) ALONE issufficient, but statement (1) alone is not sufficient.
C. BOTH statements TOGETHERare sufficient, but NEITHER statement ALONE is sufficient.
D. EACH statement ALONE issufficient.
E. Statements (1) and (2) TOGETHERare NOT sufficient.
为什么答案是C啊?
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2026-1-11 15:45
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部