ChaseDream
搜索
12
返回列表 发新帖
楼主: sdcar2010
打印 上一主题 下一主题

GMAT 数学题(3)

[复制链接]
11#
发表于 2011-1-2 14:59:52 | 只看该作者
Another solution
the number of digits in each row equals to   2*(the order number of the row)-1
so the number of digits in first 20 rows is
(1*2-1)+(2*2-1)+......+(20*2-1)
=(1+2+...+20)*2-20
=400
thus, the initial digit in 21st row is 401
12#
 楼主| 发表于 2011-1-2 21:33:29 | 只看该作者
Another solution
the number of digits in each row equals to   2*(the order number of the row)-1
so the number of digits in first 20 rows is
(1*2-1)+(2*2-1)+......+(20*2-1)
=(1+2+...+20)*2-20
=400
thus, the initial digit in 21st row is 401
-- by 会员 lonelyorchid (2011/1/2 14:59:52)



Good.

This is simply another way to express that
the number of number(s) on each row is an odd number:
number(s) in row n = 2*n-1
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-11-28 19:35
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部