ChaseDream
搜索
12
返回列表 发新帖
楼主: sdcar2010
打印 上一主题 下一主题

GMAT 逻辑分析题 (3)

[复制链接]
11#
发表于 2012-3-20 19:09:31 | 只看该作者
嗯我终于懂了~我把outsmart 和smarter等同在一起了,所以没看出gap来
ps 姐姐上一张头像好看 好看的~~
12#
发表于 2012-3-21 11:12:38 | 只看该作者
哈哈,这题跟我之前做的一题好像,完全可以用数学的集合概念来解。

Premise 1eople who do not believe that others are smarter than them(集合小)-----> People confident in their own abilities(集合大)

Premise 2eople confident in their own abilities(集合大)---->eople showcase(集合大大)

Conclusioneople outsmart(新集合)----->people showcase(集合大大)

还差一个premise 3:People outsmart(集合小小)--->people do not believe that others are smarter than them(集合小)

连起来就是people who outsmart are people who do not believe that others are smarter than them.
people who do not believe that others are smarter than them are people who are confident in their own abilities.
people who are confident in their own abilities are people who like to showcase.Nice "trigger"~~~

people who tend to outsmart others是最小的概念。
因为People who do not believe that others are smarter than them are confident in their own abilities. 不等于 people who are confident are people do not believe that others are smarter.
A--->B and B   X---->A 说明A在B的集合之内。
13#
发表于 2012-7-30 02:41:28 | 只看该作者
好搞的。。。 其实是要对outsmart 做出补充说明
14#
发表于 2012-8-1 09:34:42 | 只看该作者
B要仔细读。B的细微差别在于如果取非,没有confidence也可能outsmart,也可能不,没有逻辑链。
15#
发表于 2012-8-1 16:40:30 | 只看该作者
这题有意思啊~做个笔记就比较容易了:

Premise 1: NOT beli oth sm ====> conf
Premise 2: conf ====> think dif as show


Conclusion: outsm ====> think dif as show


所以assumption肯定是:
outsm ====> NOT beli oth sm加上这一条,就可以串成conclusion了
选(C)
16#
发表于 2013-5-19 00:18:43 | 只看该作者
babybearmm 发表于 2012-8-1 16:40
这题有意思啊~做个笔记就比较容易了:Premise 1: NOT beli oth sm ====> confPremise 2: conf ====> think  ...

非常清晰!感谢
17#
发表于 2016-11-4 21:21:41 | 只看该作者
相关推理题,主要要知道e confident in their own abilities=hink of a difficult task as a showcase rather than a hurdle
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2024-12-5 05:02
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部