You can see the pattern for the nth term of the series from the following: a_n=2*a_(n-1) -1 =4*a_(n-2) - (2+1) =8*a_(n-3) - (4+2+1) a_n=2^n*a_0 - [2^(n-1)+2^(n-2)+...+2^0)] Then apply the pattern to the 20th and 19th term. -- by 会员 fangfu (2010/10/22 1:18:44)
OK, As your method, we can get a_20 = (2^20)*a_0 - [2^19 + 2^18 + ... + 2^0] a_19 = (2^19)*a_0 - [ 2^18 + 2^17 + ... + 2^0] So a_20 - a_19 = (2^20)*a_0 - 2^19 - (2^19)*a_0 =(2^20)*3 - 2^19 - (2^19)*3 =(2^20)*3 - (2^19)*(1 + 3) =(2^20)*3 - (2^19)*4 =(2^20)*3 - (2^19)*2*2 =(2^20)*3 - (2^20)*2 =(2^20)
Am I right? |