N is the sum of the first K consecutive positive integers, where 101<=K<=150. What is the sum of 1/N? N=(1+K)K/2 1/N=2/K(K+1)=2 * 1/K(K+1) 因为1/K(K+1)=1/K — 1/(K+1) 所以Σ 2/K(K+1)=2 * Σ[1/K —1/(K+1) ]=2 *( 1/101 — 1/151) ============================================= 很疑惑,为什么1/K —1/(K+1)的和就等于 1/101 — 1/151 呢? 求解
不好意思,有个问题请教一下 N is the sum of the first K consecutive positive integers, where 101<=K<=150. What is the sum of 1/N? 这道题中的first K是怎么理解的?我原来还以为N是K之前所有正整数的和,然后给出了K的范围,但发现算不出来