ChaseDream
搜索
返回列表 发新帖
查看: 919|回复: 5
打印 上一主题 下一主题

请教prep模考软件上的一道数学题

[复制链接]
跳转到指定楼层
楼主
发表于 2010-2-11 16:26:45 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
For every positive even integer n, the function h(n) is defined to be the product of all the even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100) + 1, then p is:
A. between 2 and 100
B, between 10 and 20
C. between 20 and 30
D. between 30 and 40
E. great than 40

为什么选E呢?谢谢大家了。
收藏收藏 收藏收藏
沙发
发表于 2010-2-11 22:47:35 | 只看该作者
By factoring a 2 from each term of our function, h(100) can be rewritten as
2^50*(1*2*3*...*50).

Thus, all integers up to 50 - including all prime numbers up to 50 - are factors of h(100).

Therefore, h(100) + 1 cannot have any prime factors 50 or below, since dividing this value by any of these prime numbers will yield a remainder of 1.
===========================================================
以上是manhattang上的解释,不过我不是很明白,应为在1-50的prime no. 中说不定有一个数字(e.g. 3)在加1后刚好可以被除。。。(当然,我数学不怎么样,so long as u understand what it means...)
Since the smallest prime number that can be a factor of h(100) + 1 has to be greater than 50, The correct answer is E.
板凳
发表于 2010-2-11 23:04:23 | 只看该作者
just saw the further explaination:
the idea is this: if a number is divisible by some prime p, then the next multiple of p will be p units bigger. for instance, 75 is divisible by 5. this means that the next greatest multiple of 5 is 80, which is 5 units away.
hopefully, this fact is clear. once you realize this, it follows that consecutive integers can't share ANY primes, because they're only 1 unit apart (too close together to work for any common factor except 1, which is trivially a factor of any integer at all, anywhere).
that's the basis for saying h(100) + 1 has no prime factors below 50. if it did, then you'd have two multiples of the same prime 1 unit apart, and that's impossible.
地板
 楼主| 发表于 2010-2-12 11:40:28 | 只看该作者
It makes sense, but h(100)+1=(2^50) × 50=(2^50) × (2*5^2)=2^51*5^2, so the prime factor should be 5, right? 我不明白,
5#
发表于 2010-2-12 11:57:18 | 只看该作者
It makes sense, but h(100)+1=(2^50) × 50=(2^50) × (2*5^2)=2^51*5^2, so the prime factor should be 5, right? 我不明白,
-- by 会员 kittycat23 (2010/2/12 11:40:28)

LZ的式子写的不对,是h(100)有这个规律,不是加1,而且后面那个是50阶乘,不是50本身.
h(100)=(2^50) × 50!,  所以1-50都是h(100)的因子,那么1-50中的prime自然也是h(100)的prime factor。

翻译LS转的mahanttan解释:考虑1-50中的任一个prime,比如最小的prime 2,h(100)整除2,那么下一个整除2的是h(100)+2,所以h(100)+1肯定不能整除2. 其他小于50的prime类似。综合以上,所有小于50的prime都不可能是h(100)+1的prime factor。
6#
 楼主| 发表于 2010-2-13 06:40:03 | 只看该作者
谢谢大家的帮助!
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-11-12 08:39
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部