ChaseDream
搜索
返回列表 发新帖
查看: 973|回复: 5
打印 上一主题 下一主题

28-Q26

[复制链接]
楼主
发表于 2008-6-23 22:41:00 | 只看该作者

28-Q26


    

Q26:


    

If positive
integer x is a multiple of 6 and positive integer y is a multiple of 14, is xy
a multiple of 105?


    

(1)
            
x
is a multiple of 9.


    

(2)     y is a
multiple of 25.


    

              


    

A. Statement (1) ALONE
is sufficient, but statement (2) alone is not sufficient.


    

B. Statement (2) ALONE
is sufficient, but statement (1) alone is not sufficient.


    

C. BOTH statements
TOGETHER are sufficient, but NEITHER statement ALONE is
sufficient.


    

D. EACH statement
ALONE is sufficient.


    

E. Statements (1)
and (2) TOGETHER are NOT sufficient.


    

                                                                              Answer:



这题应该很简单的,但却越算越糊涂,请教如何做的
沙发
发表于 2008-6-23 23:00:00 | 只看该作者

C. Right??

18*350 is definitely the multiple of 3*35.

板凳
 楼主| 发表于 2008-6-24 01:11:00 | 只看该作者
can you explain how to get 350, I'm not sure the answer, someone please answer it.
地板
发表于 2008-6-24 02:45:00 | 只看该作者

X是6倍数,包含因子2,3;Y是14的倍数,包含因子2,7

105=3x7x5,所以要xy是105的倍数,则需要xy包含因子3,7,5.

3和7已经有了,则只需要找出一个因子5就可以,条件2刚好满足,

所以答案应该是B

5#
 楼主| 发表于 2008-6-24 12:07:00 | 只看该作者
马甲最棒,思路很明了,而且解释很容易理解
6#
发表于 2008-6-24 15:04:00 | 只看该作者

Let me try it..............

(1) x is a multiple of 6 & 9;

i.e., x is a multiple of 18;

i.e., x = 18m & y = 14n (since y is a multiple of 14)

i.e., xy = 252mn or 252k (m,n,k are any positive integers)

 

For k =1, 2, 3, 4 etc; xy is not a multiple of 105

Whereas for k=5, xy is a multiple of 105 ---> INSUFF

 

(2) y is a multiple of 14 & 25;

i.e., y is a multiple of 350; [14×25]

i.e., x = 6m & y = 350n (since x is a multiple of 6)

i.e., xy = 2100mn or 2100k (m,n,k are any positive integers)

 

2100 is divisible by 105 ... hence xy is a multiple of 105 ... SUFFICIENT

Answer is B.

您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-10-31 22:41
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部