ChaseDream
搜索
返回列表 发新帖
查看: 1587|回复: 3
打印 上一主题 下一主题

关于咖啡因的那篇文章。。(63篇第10篇)

[复制链接]
楼主
发表于 2008-1-25 21:24:00 | 只看该作者

关于咖啡因的那篇文章。。(63篇第10篇)

Caffeine, the stimulant in coffee, has been called “the
                    most widely
                
used psychoactive substance on Earth.” Snyder, Daly and Bruns have recently proposed that caffeine affect behavior by countering the activity in the human brain of a naturally occurring chemical called adenosine. Adenosine normally depresses neuron firing in many areas of the brain. It apparently does this by inhibiting the release of neurotransmitters, chemicals that carry nerve impulses from one neuron to the next. Like many other agents that affect neuron firing, adenosine must first bind to specific receptors on neuronal membranes. There are at least two classes of these receptors, which have been designated A1 and A2. Snyder et al (et al: abbr. (Lat)
以及其他人,等人) propose that caffeine, which is structurally similar to adenosine, is able to bind to both types of receptors, which prevents adenosine from attaching there and allows the neurons to fire more readily than they otherwise would.

For many years, caffeine’s effects have been attributed to its inhibition of the production of phosphodiesterase, an enzyme that breaks down the chemical called cyclic AMP. A number of neurotransmitters exert their effects by first increasing cyclic AMP concentrations in target neurons. Therefore, prolonged periods at the elevated concentrations, as might be brought about by a phosphodiesterase inhibitor, could lead to a greater amount of neuron firing and, consequently, to behavioral stimulation. But Snyder et al point out that the caffeine concentrations needed to inhibit the production of phosphodiesterase in the brain are much higher than those that produce stimulation. Moreover, other compounds that block phosphodiesterase’s activity are not stimulants.

To buttress their case that caffeine acts instead by preventing adenosine binding, Snyder et al compared the stimulatory effects of a series of caffeine derivatives with their ability to dislodge adenosine from its receptors in the brains of mice. “In general,” they reported, “the ability of the compounds to compete at the receptors correlates with their ability to stimulate locomotion in the mouse; i.e., the higher their capacity to bind at the receptors, the higher their ability to stimulate locomotion.” Theophylline, a close structural relative of caffeine and the major stimulant in tea, was one of the most effective compounds in both regards.

There were some apparent exceptions to the general correlation observed between adenosine-receptor binding and stimulation. One of these was a compound called 3-isobutyl-1-methylxanthine (IBMX), which bound very well but actually depressed mouse locomotion. Snyder et al suggests that this is not a major stumbling block (stumbling block: n.障碍物, 绊脚石) to their hypothesis. The problem is that the compound has mixed effects in the brain, a not unusual occurrence with psychoactive drugs. Even caffeine, which is generally known only for its stimulatory effects, displays this property, depressing mouse locomotion at very low concentrations and stimulating it at higher ones.

2.    Which of the following, if true, would most weaken the theory proposed by Snyder et al?

(A) At very low concentrations in the human brain, both caffeine and theophylline tend to have depressive rather than stimulatory effects on human behavior.

(B) The ability of caffeine derivatives at very low concentrations to dislodge adenosine from its receptors in mouse brains correlates well with their ability to stimulate mouse locomotion at these low concentrations.

(C) The concentration of cyclic AMP in target neurons in the human brain that leads to increased neuron firing can be produced by several different phosphodiesterase inhibitors in addition to caffeine.

(D) The concentration of caffeine required to dislodge  from its receptors in the human brain is much greater than the concentration that produces behavioral stimulation in humans.D

(E) The concentration of IBMX required to dislodge adenosine from its receptors in mouse brains is much smaller than the concentration that stimulates locomotion in the mouse.

请nn们帮忙解释一下吧。。adenosine在d中出现时怎么样起到weaken作用的?

adenosine在d中出现时怎么样起到weaken作用的?
沙发
发表于 2008-1-26 07:53:00 | 只看该作者

OG10第一篇,OG11紫皮第十二篇。

但是OG中只有6道题,63篇中有9道题,这题就是OG中没有的。

原文中Snyder et al 反对观点:

But Snyder et al point out that the caffeine concentrations needed to inhibit the production of phosphodiesterase in the brain are much higher than those that produce stimulation

这个观点paraphrase就是D) The concentration of caffeine required to dislodge  from its receptors in the human brain is much greater than the concentration that produces behavioral stimulation in humans.


[此贴子已经被作者于2008-1-26 7:53:41编辑过]
板凳
 楼主| 发表于 2008-1-26 10:56:00 | 只看该作者

恩?那这哪里削弱了?

这题怎么和我昨天晚上看的不一样了厄?

地板
发表于 2008-3-5 22:09:00 | 只看该作者
以下是引用lukeleng在2008-1-26 7:53:00的发言:

OG10第一篇,OG11紫皮第十二篇。

但是OG中只有6道题,63篇中有9道题,这题就是OG中没有的。

原文中Snyder et al 反对观点:

But Snyder et al point out that the caffeine concentrations needed to inhibit the production of phosphodiesterase in the brain are much higher than those that produce stimulation

这个观点paraphrase就是D) The concentration of caffeine required to dislodge  from its receptors in the human brain is much greater than the concentration that produces behavioral stimulation in humans.


我觉得是对原文的否定说法,不是paraphrase。

原文这句话是用来反对旧观点,即支持新观点(也就是Snyder的观点)

因为D选项否定了这一支持新观点的理由,所以削弱了新观点(也就是Snyder的观点)

:)


[此贴子已经被作者于2008-3-5 22:09:43编辑过]
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-8-19 15:50
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部