ChaseDream
搜索
返回列表 发新帖
查看: 5381|回复: 2
打印 上一主题 下一主题

求助NN几道prep maths 急!

[复制链接]
楼主
发表于 2007-7-18 15:07:00 | 只看该作者

求助NN几道prep maths 急!


    

39.   


    

A certain stock
exchange designates each stock with a one-, two-, or three-letter code, where
each letter is selected from the


    

26 letters of the
alphabet.  If the letters may be repeated
and if the same letters used in a different order constitute a different code,
how many different stocks is it possible to uniquely designate with these
codes?


    

 


    

(A)  2,951


    

(B)  8,125


    

(C)  15,600


    

(D)  16,302


    

(E)  18,278


    

 


    

E


    

41.  


    

All of the stocks on
the over-the-counter market are designated by either a 4-letter or a 5-letter
code that is created by using the 26 letters of the alphabet.  Which of the following gives the maximum
number of different stocks that can be designated with these codes?


    

 


    

(A) 2(26^5)


    

(B) 26(26^4)


    

(C) 27(26^4)


    

(D) 26(26^5)


    

(E) 27(26^5)


    

 


    

C


    

43.   


    

A committee of
three people is to be chosen from four married couples.  What is the number of different committees
that can be chosen if two people who are married to each other cannot both
serve on the committee?


    

 


    

(A)  16


    

(B)  24


    

(C)  26


    

(D)  30


    

(E)  32


    

 


    

E



多年不碰数学了,这几题的答案怎么也算不出,向各位XDJM求教,非常感谢!!



沙发
发表于 2007-7-18 16:48:00 | 只看该作者

1:

组合问题:1位数的时候为26个选项中选一,即C(26)1;2位数的时候,因为数字可以重复,所以个位和十位都是C(26)1,如此类推。计算式:

C(26)1+C(26)1*C(26)1+C(26)1*C(26)1*C(26)1=26+26^2+26^3=18,278

2:

同上,计算式:

26^4+26^5=26^4(1+26)=27(26^4)

3:

没有couple的组合=所有组合-有couple的组合,计算式:

所有组合=C(8)3=56

有couple的组合=C(4)1*C(6)1=24: C(4)1是4对couple选一对,C(6)1是剩下6个人里选一个。

答案=56-24=32。

板凳
 楼主| 发表于 2007-7-19 11:29:00 | 只看该作者
感动,没想到这么快就有回复 ,谢谢!谢谢!
AlexLam写得很清楚,看得很明白


您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2026-1-28 13:48
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部